

Analysis of Amoxicillin using the LCMS-2010EV and the LCMS-IT-TOF

Amoxicillin is a drug belonging to a class of compounds known as β -lactam antibiotics. Amoxicillin, a member of the penicillin family, is used most often to treat a number of bacterial infections including H. influenzae, N. gonorrhoea, E. coli, Pneumococci, Streptococci, and some strains of Staphylococci. It is thought that these penicillin-derived compounds work to stop the bacteria from multiplying by inhibiting its cell wall synthesis.

Figure 1. Structure of Amoxicillin, $C_{16}H_{19}N_3O_5S$; $[M+H]^+ = 366.1118$

Methods

<u>Sample preparation</u>. For LCMS-2010EV analysis, ~ 1mg/mL solution of amoxicillin was prepared in a mixture of MeOH and ACN (4:1). For LCMS-IT-TOF analysis a 1.25 mg/mL solution was used for analysis.

Column	Shim-pack VP-ODS (4.6 mm x 150 mm)
Mobile phase A	95% H ₂ O (0.1% Formic Acid) + 5% ACN
Mobile phase B	95% ACN + 5% H ₂ O (0.1% Formic Acid)
LC Time program (linear	0% B (0-1min); 25% B (15-23min); 50% B (23.01-
gradient)	25min); 5% B (25.01-30min)
Flow rate	0.3 mL/min
Injection volume	1 µL
Probe voltage	+4.5 kV (+ ESI)
CDL temperature	250 °C
Block heater	200 °C

temperature	
Nebulizing gas flow	1.5 L/min
CDL voltage	-5 V
Q-Array	DC 50 V; RF 150 V
Scan range	100 – 500 <i>m/z</i>

Table II. Analytical Conditions for LCMS-IT-TOF

Column	Shim-pack VP-ODS (4.6 mm x 150 mm)
Mobile phase A	95% H ₂ O (0.1% Formic Acid) + 5% ACN
Mobile phase B	95% ACN + 5% H ₂ O (0.1% Formic Acid)
LC Time program	0% B (0-1 min); 25% B (15-23 min); 50% B (23.01-
(linear gradient)	25 min); 5% B (25.01-30 min)
Flow rate	0.3 mL/min
Injection volume	0.5 μL
Probe voltage	4.50 kV
CDL temperature	200 °C
Block heater	200 °C
temperature	
Nebulizing gas flow	1.5 L/min
Ion accumulation time	50 msec
MS	100 – 1000 <i>m/z</i> ; event time 200 msec
MS ²	101 – 400 <i>m/z</i> ; event time 188 msec; precursor
	366.1000 <i>m/z</i>
MS ³	97 – 400 <i>m/z;</i> event time 257 msec; precursor
	349.0600 <i>m/z</i>
CID parameters	Energy 100 %; collision gas 100%; time 30 msec

Results

Figure 2. Top: Analysis of amoxicillin $[(M+H)_{thr}^+ = 366.11]$ on LCMS-2010EV. Observed parent ion (366 *m/z*) and loss of NH₃ (349 *m/z*). Bottom: Fragmentation of amoxicillin using increased Q-Array Voltage (+ 5 to + 50 V) leading to in source dissociation (ISD).

Figure 2 shows the resulting mass spectra from the analysis of amoxicillin on the LCMS-2010EV yielding the protonated ion for amoxicillin at 366.0 m/z. Increasing the Q-array voltage from + 5 to + 50 V invokes considerable dissociation of the molecule as seen in the bottom spectrum.

Figure 3. Analysis of amoxicillin [(M+H)_{thr}⁺ = 366.1118] on the LCMS-IT-TOF. Precursor for MS^2 - 366.1114 *m/z*; Precursor for MS³ - 349.0841 *m/z* (indicated by red arrows)

The LCMS-IT-TOF gave similar fragmentation of amoxicillin as the LCMS-2010EV with the added advantage of improved mass accuracy necessary for verifying fragment ion chemical composition.

Figure 4. Fragmentation of amoxicillin

Table III.	Mass ac	curacy values for	r amoxicillin and	d its CID fragmer	nts using the LCMS-IT-
TOF. No	te: Analy	sis performed wi	ithout an interna	al standard.	

Formula	Calculated mass (M+H) [*]	Measured mass (M+H)⁺	Mass accuracy (ppm)
$C_{16}H_{19}N_3O_5S$	366.1118	366.1114	1.1
$C_{16}H_{16}N_2O_5S$	349.0853	349.0841	3.4
$C_6H_9NO_2S$	160.0427	160.0425	1.3

Conclusions

Amoxicillin was successfully separated and detected under gradient conditions using a Shimadzu Prominence series LC coupled to both the LCMS-2010EV and the LCMS-IT-TOF. Both the LCMS-2010EV and the LCMS-IT-TOF could generate fragmentation data with the LCMS-IT-TOF allowing for MSⁿ and excellent mass accuracy. Mass accuracy data obtained from the LCMS-IT-TOF is comparable to data reported by other vendors requiring the use of an internal standard or dual-sprayer configuration.¹

¹ Näegele, E., Moritz, R. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MSⁿ and accurate mass determination by ESI TOF. *J. Am Soc Mass Spectrom* **2005**, 16, 1670-1676.