Scale Up with Confidence

Column selection for preparative HPLC

Mark Powell Columns and Supplies Technical Support June 29, 2023

What is Preparative LC and Why Do We Do It?

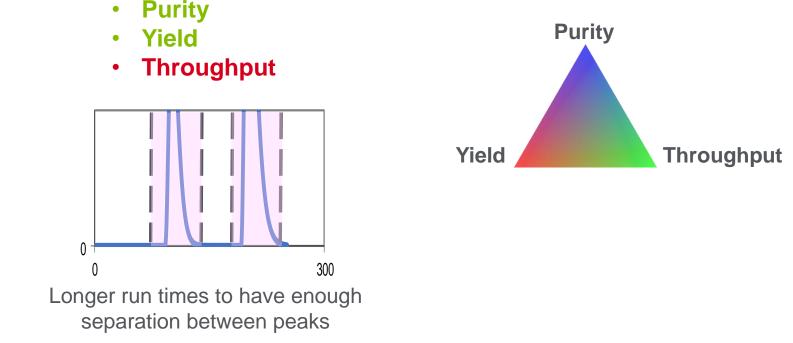
Goal of preparative LC

Collect one or more compounds from a sample

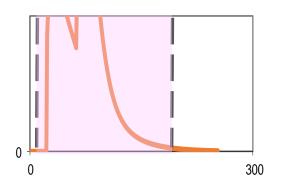
Differences Between Analytical and Preparative LC

	Analytical LC	Preparative LC
Objective	Quantitation – develop a reproducible method to quantify an analyte. Complete separation isn't required (with certain detectors or integration techniques)	Purification – purify analyte from rest of matrix. Coeluting impurities will impact purity of collection and could impact downstream testing results
Environment	GLP/GMP – prescriptive rules for method development; once method is validated for an analyte, very little deviation is allowed	Discovery – analysis of novel compounds; no precedent; a lot of flexibility around column choice and run conditions; chemist can make changes on the fly
Peak Shape	Gaussian – concentration levels must be within linear range of detector	Non-Gaussian – concentration levels can overload the column and saturate the detector
Priority	Reproducible results – some injection modes can waste sample	Minimum sample loss – injection reproducibility doesn't matter

Small molecule purification environments



High	Objectives	Workflow	Applications		
throughput	 Purifying many different samples Small amounts of material for preliminary bioactivity testing or further characterization Target – main component 	 Not much time can be spent on method development – analytical screen to determine best column, then utilize focused gradient to improve separation (if necessary) Requires small amounts of many different samples, typically 1-2 injections per sample 	 Combinatorial chemistry libraries Reaction cleanup Open access purification for medicinal chemists 		
Bulk	Objectives	Workflow	Applications		
purification	 Purifying one sample Significant amounts of material for more in-depth testing and characterization Target – main component or an impurity 	 Considerable time is spent optimizing method to maximize yield, purity and minimize solvent consumption Many injections of the same sample 	 Purification of target compounds (API), Natural products, etc Impurity isolation for Identification, structure elucidation and activity testing 		



Objectives of Preparative LC: purity, yield and throughput

- Throughput
- Yield
- Purity

Shorter run times, but collected fractions may contain impurities

You can optimize two of the parameters by sacrificing the third. The most important parameter depends on the application.

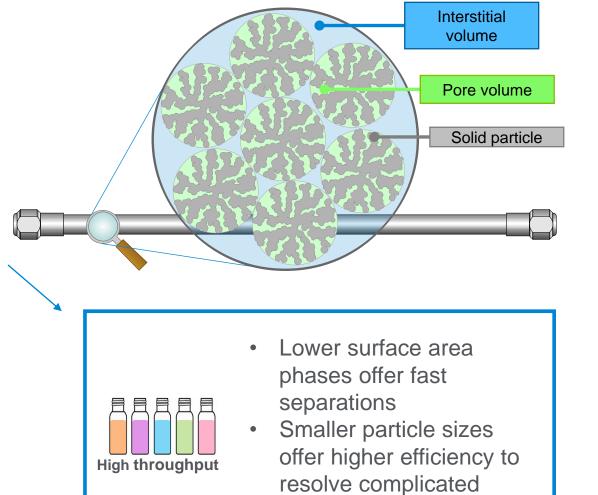
Column Dimensions, Flow Rates and Column Loads Choosing the right parameters

	Purification range [mg]	1–15	7–70	30–300	64–640	180–1800	400-4000	700–7000	600–16000	2800– 28000
	4.6 mm	← 0.8–2.0 →								
	9.4 mm (0.5 inch)	← 4-10	D 🔿							
[ˈɯt	21.2 mm (1 inch)	÷	18–42	→						
neter [n	30 mm	÷	34–85		→					
side diam	50 mm (2 inch)	÷		94–236	-	•				
Column inside diameter [mm]	75 mm (3 inch)	÷		212–931		÷				
	100 mm (4 inch)	÷		3	378–945		÷			
	150 mm (6 inch)	÷			800–210	0		→		
	200 mm (8 inch)	÷			110	0–3375			⇒	

InfinityLab Preparative HPLC Columns

Family	Dhase	21.2 mm ID				30 mm ID			
Family	Phase	50	100	150	250	50	100	150	250
Dereehcl	SB-C18	670050-902		670150-902					
Poroshell	HPH-C18	670050-702		670150-702					
	Eclipse Plus C18	595050-902	595100-902	595150-902	595250-902	575050-902	575100-902	575150-902	575250-902
	Eclipse Plus C8	595050-906	595100-906	595150-906	595250-906	575050-906	575100-906	575150-906	575250-906
ZORBAX	SB-C18	585050-902	585100-902	585150-902	585250-902	565050-902	565100-902	565150-902	565250-902
	SB-C8	585050-906	585100-906	585150-906	585250-906	565050-906	565100-906	565150-906	565250-906
	EP Phenyl-Hexyl	595050-912	595100-912	595150-912	595250-912	575050-912	575100-912	575150-912	575250-912
	C18	INF6000050X212	INF6000100X212	INF6000150X212	INF6000250X212	INF6000050X300	INF6000100X300	INF6000150X300	INF6000250X300
Pursuit XRs	C8	INF6010050X212	INF6010100X212	INF6010150X212	INF6010250X212	INF6010050X300	INF6010100X300	INF6010150X300	INF6010250X300
	Diphenyl	INF6020050X212	INF6020100X212	INF6020150X212	INF6020250X212	INF6020050X300	INF6020100X300	INF6020150X300	INF6020250X300





Sample Loading and Surface Area

Surface area: Refers to the total area of the solid surface on the HPLC particle. The surface area of a typical porous adsorbent such as silica gel can vary from less than 100 to $600 \text{ m}^2/\text{g}$.

Phase	Surface Area (m ² /g)	Pore Size (Å)
Poroshell SB-C18 (4 µm SPP)	130	120
Pursuit XRs C18	440	100

matrices

Agilent Biomolecule Columns Portfolio

	Protein Therapeutics									cleotides	Vec	tor Therapeu	tics
Titer Determination	Aggregate Analysis		ty and PTM lysis	Peptide Mapping and PTM Analysis	Charge Variant Analysis	Glycan Analysis		/Cell Culture Analysis		and Impurity lysis	Aggregation	Empty/Full	Capsid Identity
Affinity	Size exclusion	Reversed phase >150 Å	Hydrophobic interaction	Reversed phase <150 Å	lon exchange	Hydrophilic interaction	Reversed phase <150 Å	Hydrophilic interaction	Reversed phase	lon exchange	Size exclusion	Anion exchange	Reversed phase
Bio-Monolith rProtein A	AdvanceBio SEC 1.9 μm	PLRP-S 1000 Å 5 μm	AdvanceBio HIC	AdvanceBio EC-C18	Bio mAb/Bio IEX 5 μm	AdvanceBio Glycan Mapping	AdvanceBio Amino Acid Analysis	AdvanceBio MS Spent Media	AdvanceBio Oligonucleoti de	PL-SAX	Bio SEC-5	Bio SAX	ZORBAX RRHD 300 Å, 1.8 μm
Bio-Monolith Protein A	AdvanceBio SEC 1.9 µm	PLRP-S		AdvanceBio Peptide Mapping	Bio mAb (WCX)		ZORBAX Eclipse AAA 3.5 µm		PLRP-S	Bio SAX		Bio SAX	
Bio-Monolith Protein G	AdvanceBio SEC 2.7 µm	AdvanceBio RP mAb 450 Å		AdvanceBio Peptide Plus	Bio IEX (SAX, WAX, SCX, WCX)					Bio SAX			
	Bio SEC-3	ZORBAX RRHD 300 Å, 1.8 μm		ZORBAX RRHD 300 Å, 1.8 μm	PL SCX, SAX								
	Bio SEC-5	ZORBAX 300SB 3.5, 5 and 7 µm			Bio-Monolith (QA, DEAE, SO3)	•							
	ZORBAX GF250 and GF450	Poroshell 300 5 µm										Stainless steel (SS) column hardware	Solid PEEK or PEEK-lined SS bioinert column hardware
9	June 28, 2023	}	Scale Up with Conf	idence DE614	439552							*	Agilent

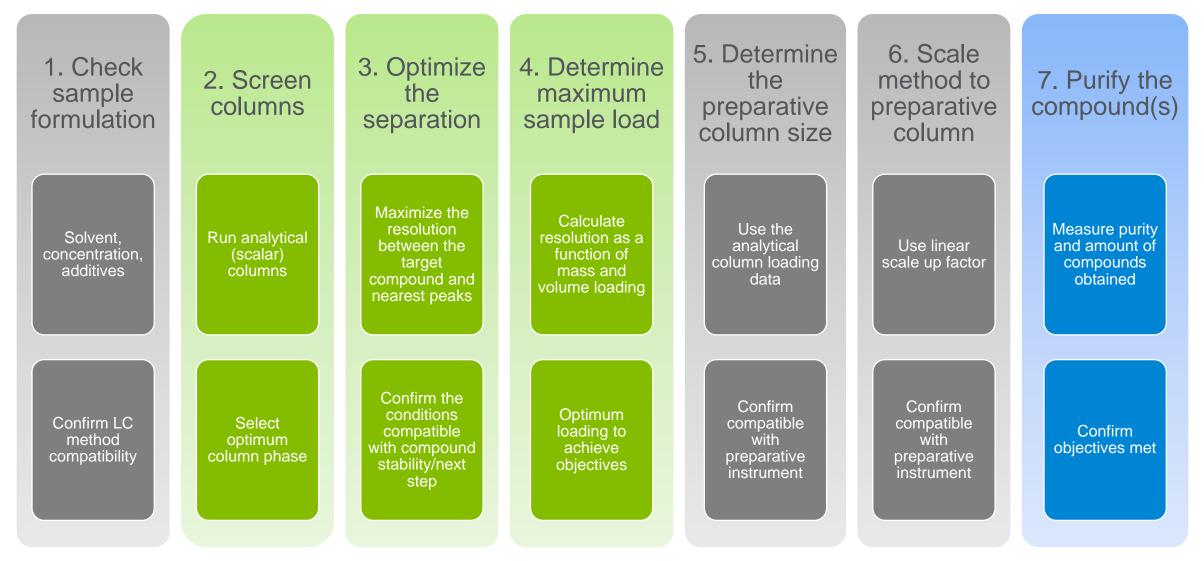
Flow Rate (Biomolecules)

The optimum flow rate for reversed phase and ion exchange preparative LC columns is 360 cm/h or less (equivalent to 1 mL/min on a 4.6 mm id column).

Flow rates equivalent to 360 cm/h suitable for reversed phase and ion exchange columns

4.6 mm ID	10 mm ID	21.2 mm ID	30 mm ID	50 mm ID
1.0 mL/min	4.7 mL/min	21.2 mL/min	42.5 mL/min	118 mL/min

The optimum flow rate for size exclusion columns is 120 cm/h or less (equivalent to 1 mL/min on a 7.8 mm id column).


Flow rates equivalent to 120 cm/h suitable for size exclusion columns

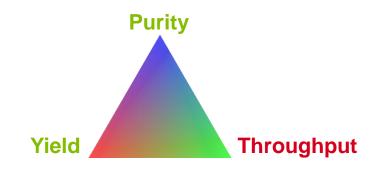
7.8 mm ID	10 mm ID	21.2 mm ID	30 mm ID	50 mm ID
1.0 mL/min	1.6 mL/min	7.4 mL/min	15 mL/min	41 mL/min

Steps in Developing a Preparative Method

Infinity Lab

Bulk Purification

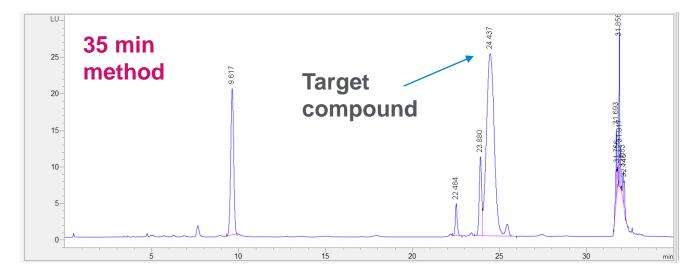
12 June 28, 2023 Scale Up with Confidence DE61439552


Objectives

- A colleague has synthesized a proprietary small molecule.
- They would like to have their target compound purified from their crude mix (1 g material) for additional characterization.
- The collaborator has developed an analytical method on a C18 column that is not available in a preparative dimension.

Priority checklist

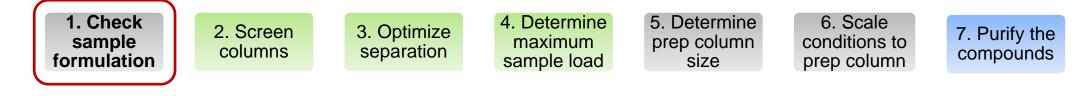
- Purity?
- Yield?
- Throughput?



Fits bulk purification

Analyzing the Analytical Method

- Method used to confirm synthesized product
- Column: C18, 4.6 x 150 mm, 5 μm
- Injection volume: 1 μL
- Mobile phase:
 - A: $H_2O + 0.1\%$ formic acid
 - B: ACN + 0.1% formic acid
- Gradient:
 - 5% B for 0.5 min
 - 10% B for 19.5 min
 - 18% B for 10 min
 - 80% B flush for 3 min
 - 5% B for 2 min

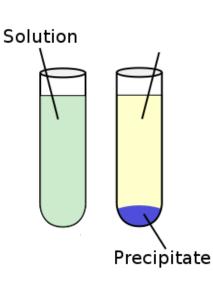


How can this be converted into a successful purification method?

- Develop on an analytical phase available in preparative dimensions
- Improve separation between product and impurities
- Increase the sample load on the column
- Reduce run time

Step 1: Check Sample Formulation and Solubility

- Verify sample is compatible with reversed-phase LC
- Collaborator has had success with C18 phase
- Verify sample is soluble in mobile-phase compatible solvent
 - Acetonitrile, methanol, ethanol, water
 - Many samples are dissolved in a strong solvent (DMSO, DMF)
 - Low solubility in mobile phase = sample precipitating (crashing) out of solution
 - Strong solvents can impact the peak shape and loading of early eluting peaks
- Sample provided as a dried powder


15

• Soluble up to 20 mg/mL in 50:50 ethanol:water

Test solubility by putting a few drops of sample solution into a beaker of mobile phase (starting composition)

Step 2: Screen Columns and Mobile Phases

Column chemistry and mobile phase have the biggest impact on separation

If you are developing a method for a new/unknown compound:

- Screen different column/mobile phase combinations with a generic gradient (5-95%)
- <u>Columns</u>: screen several columns with complementary selectivities
- <u>Mobile phase</u>: water:acetonitrile and water:methanol are most common
- <u>pH:</u> If the pH \approx the compound's pK (dissociation constant), bad peak shape or split peak
 - Operate at a pH that is 1-2 units away from the pKa

If you already have a method:

• Make sure there is a matching preparative column

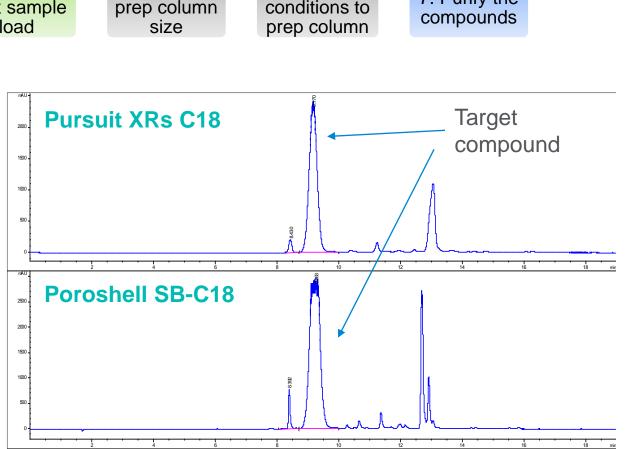
Make sure you have both analytical and preparative columns that are the same phase

Step 2: Screening Study

1. Check sample formulation 2. Screen columns

3. Optimize separation

4. Determine max sample load


5. Determine

6. Scale conditions to

7. Purify the

Modified screening study

- Collaborator's method run on C18
- Columns (available in preparative dimensions)
- Agilent InfinityLab Pursuit XRs C18, 4.6 x 150 mm, 5 µm
- Agilent InfinityLab Poroshell SB-C18, 3.0 x 150 mm, 4 µm
- Mobile phase:
 - A: $H_2O + 0.1\%$ formic acid ____
 - B: ACN + 0.1% formic acid
- Gradient: •
 - 5 95% in 15 minutes
 - 95% for 3 minutes

Flow rate: XRs C18 - 1 mL/min; SB-C18 - 0.5 mL/min; mobile phase: A - water + 0.1% formic acid; B - acetonitrile + 0.1% formic acid; gradient: 5 - 95% B in 15 min, 95% B for 3 min; injection volume: XRs C18 - 20 µL; SB-C18 - 10 µL; detection: UV 335 nm.

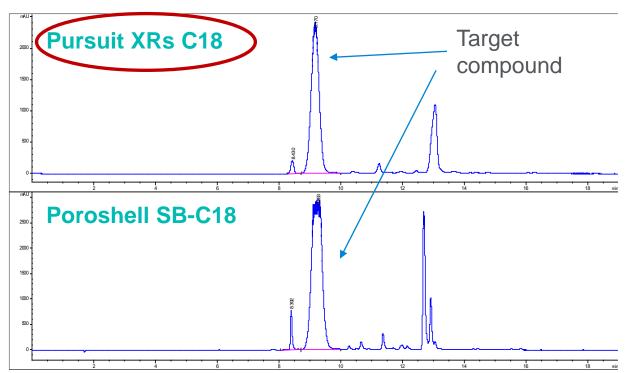
Step 2: Screening Study

1. Check sample formulation

2. Screen columns

3. Optimize separation

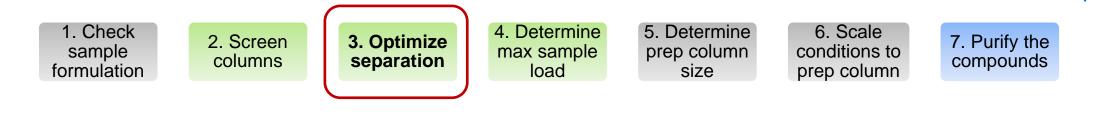
4. Determine max sample load 5. Determine prep column size 6. Scale conditions to prep column


Infinity La

7. Purify the

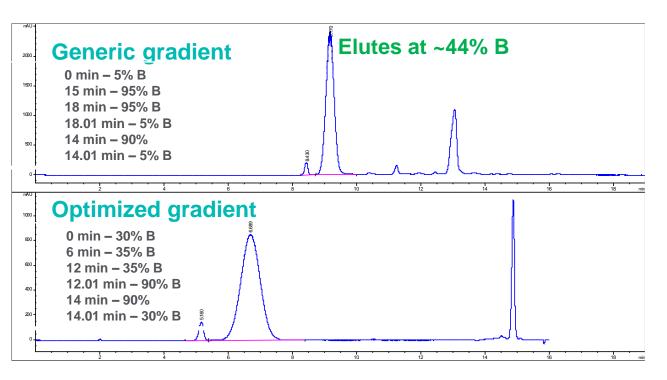
compounds

Results


- Both columns have similar elution; SB-C18 provides better separation for later peaks
- Focus on the critical pair target compound and close eluting impurities
- Pursuit XRs available in 30 mm id; chosen for purification work

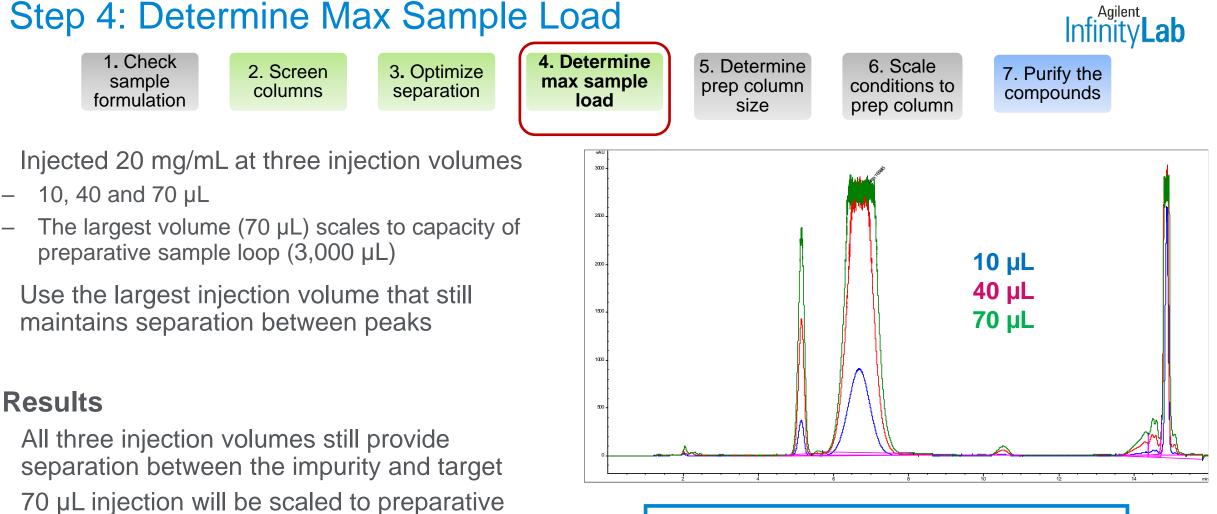
Flow rate: XRs C18 – 1 mL/min; SB-C18 – 0.5 mL/min; mobile phase: A – water + 0.1% formic acid; B – acetonitrile + 0.1% formic acid; gradient: 5 – 95% B in 15 min, 95% B for 3 min; injection volume: XRs C18 – 20 μL; SB-C18 – 10 μL; detection: UV 335 nm.

Step 3: Optimize the Separation of the Critical Pair



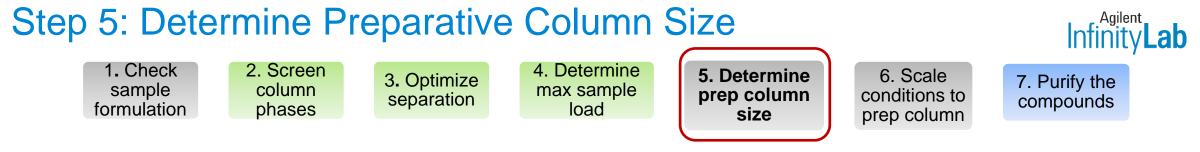
Things to keep in mind:

- Optimizing the method on the analytical system saves sample and solvent
- Focus on the separation of the critical pair; impurities can coelute
- Increasing the resolution of the critical pair will increase sample loading capacity


Results

- Original analytical method 35 minutes, with partially coeluting impurities
- Optimized method 16 minutes, with target well separated from nearest impurity

Aailent



Tip

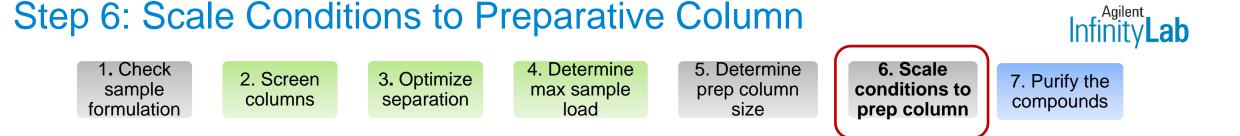
It's ok if the signal is saturated. Focus on the separation at the baseline – if the peaks are separated, you're good.

instrument

• **Request:** Purify 1 g of material

General Guidelines									
Column id	Flow rate	Recommended injection volume	Easy separation (α >1.5)	Difficult separation $(1.2 < \alpha < 1.5)$					
4.6 mm	1 mL/min	10 µL	3 – 15 mg	0.5 – 3 mg					
21.2 mm	20 mL/min	500 μL	70 – 400 mg	20 – 70 mg					
30 mm	40 mL/min	1000 μL	140 – 800 mg	40 – 140 mg					
50 mm	100 mL/min	2500 μL	400 – 2000 mg	100 – 400 mg					

Your mileage my vary



Analytical and preparative columns that have matching phase, particle size, and length provide most consistent results.

Larger column ids can handle larger injection volumes. These are good for purifying dilute samples in fewer injections.

Preparative flow rate $\left(\frac{dp}{dp}\right)^2$

$$f_p = f_a \left(\frac{dp}{d_a}\right)$$

Where:

 $f_a =$ Flow rate of analytical column

 d_p = Internal diameter of preparative column

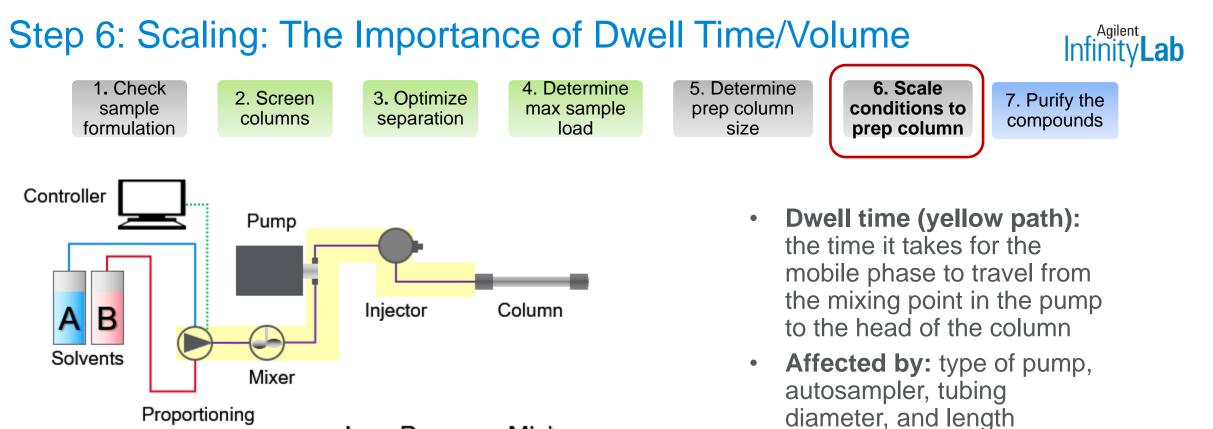
 d_a = Internal diameter of analytical column

Conditions for 30 x 150 mm column:

- Flow rate: 42 mL/min
- Injection volume: 3,000 µL

Where:

 V_a = Injection volume of analytical column d_p = Internal diameter of preparative column $d_a =$ Internal diameter of analytical column

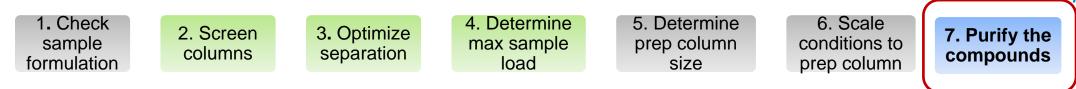

Preparative injection volume

 $V_p = V_a \left(\frac{d_p}{d_2}\right)^2$

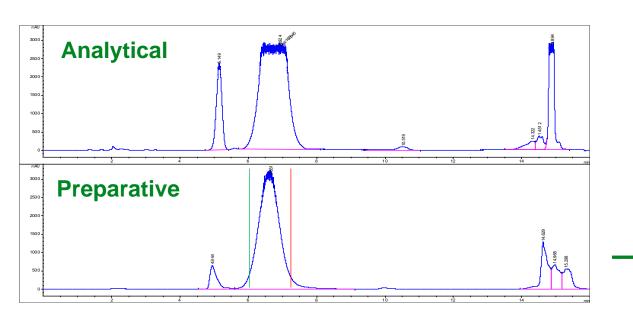
Make sure the flow rate for your preparative column can be delivered by your instrument.

Low-Pressure Mixing

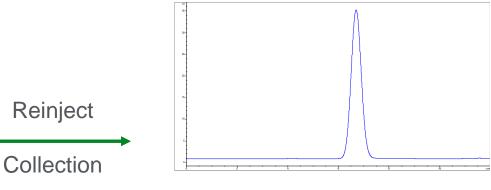
https://community.agilent.com/technical/consumables/w/ wiki/2897/lc-method-translation---the-dwell-volume


Valve

- **Can cause:** changes in retention time and resolution
- Difference in dwell time was calculated to 0.8 min
- Added as an isocratic hold to the beginning of the purification method


Want more info? Visit: http://explore.agilent.com/preparative-lc-primer

Step 7: Purify the compound



- Since the sample is well understood, UV detection is typically all that's required
- Samples are pooled all collections of the same compound are deposited into the same container
- Collections are triggered by a combination of threshold and time windows to minimize collection volume
- Collection is reinjected onto analytical column to verify purity

Nervous to make that first big preparative injection? Make a small one first to check that your scale up calculations are correct.

One peak = confirms purity

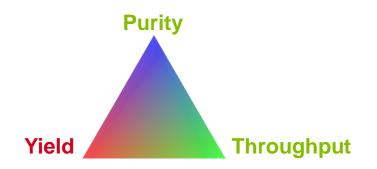
24

High-Throughput Purification


			Anilant

Need For a High-Throughput Environment

High throughput



What's important?

- Collecting enough material (10 to 100 mg)
- High purity
- Minimal method development

Ways to improve throughput:

- Screening (step 2) analytical columns
- Optimizing (step 3) focused gradients

Step 2: Improving Screening by Leveraging L/d_n

3. Optimize

separation

formulation phases Preferred columns: 2.1 x 50 mm, sub-2 µm or

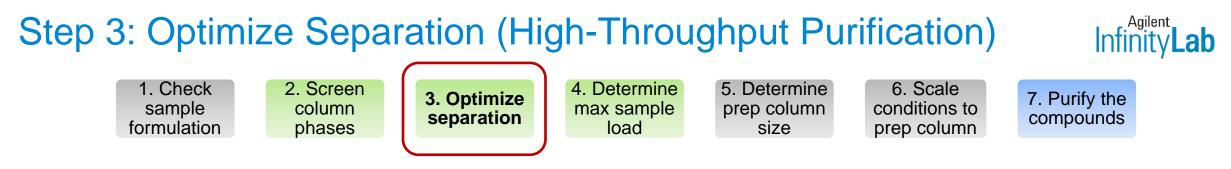
1. Check

sample

smallest available to further improve throughput

2. Screen

column


- Small columns and fast gradients (2 to 3 min) are combined to minimize method development time
- Methods can be aggressive the goal is to ٠ identify a column/mobile phase combination that will have the highest chance of separation, not a final separation
- Columns with close L/d_p have similar resolving power

Screen with sub-2 µm columns and then scale with L/dp (length/particle diameter)

 Running a focused gradient can tremendously improve the critical pair's separation with minimal method development

Slope: 3.1% B/min

• Focused gradient – reducing the slope of the original gradient specific to the peaks of interest

 Generic gradient (adjusted):

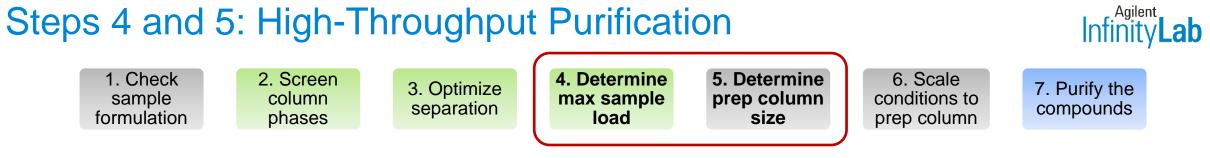
 5% B: 0 to 2.0 min

 85% B: 10.0 min

 85% B: 10 to 11.5 min

 Slope: 10% B/min

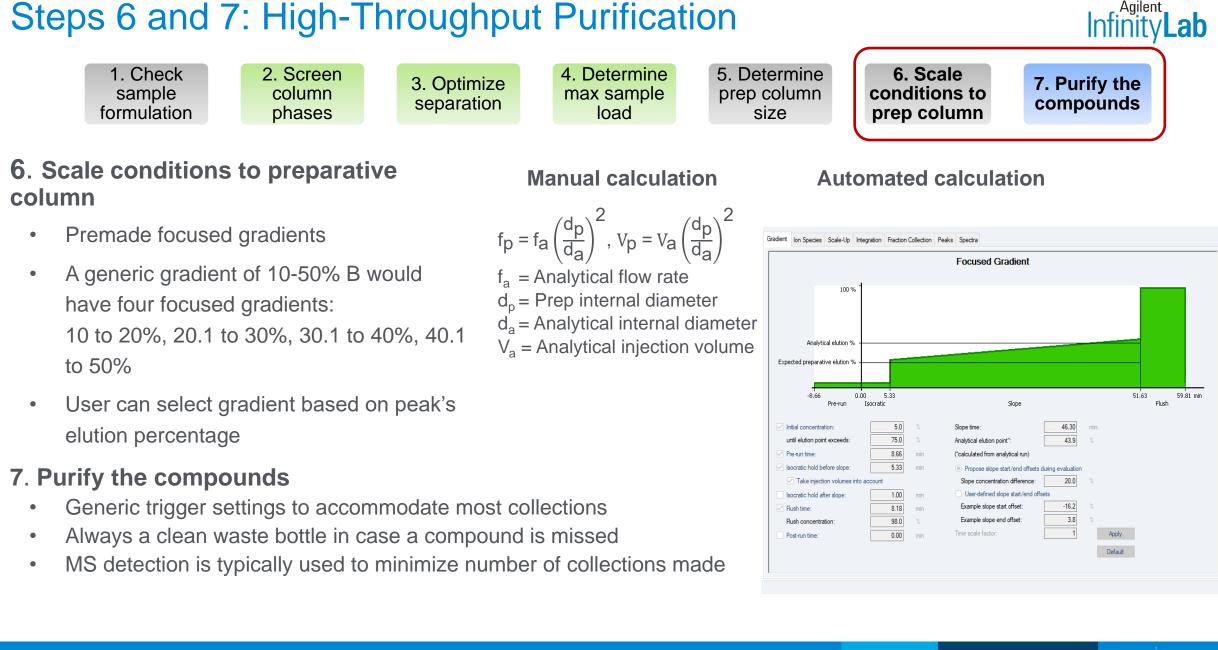
 Focused gradient (adjusted):


 5% B: 0 to 2.0 min

 25% B: 8.5 min

 85% B: 8.6 to 11.6 min

Want more info? Visit http://explore.agilent.com/preparative-lc-primer


4. Determine max sample load

• Generally not done for high-throughput work since only a small amount of sample is required

5. Determine preparative column size

• Instead, a column is chosen based on the anticipated load. The most popular column ids for discovery work are 21.2 and 30 mm id.

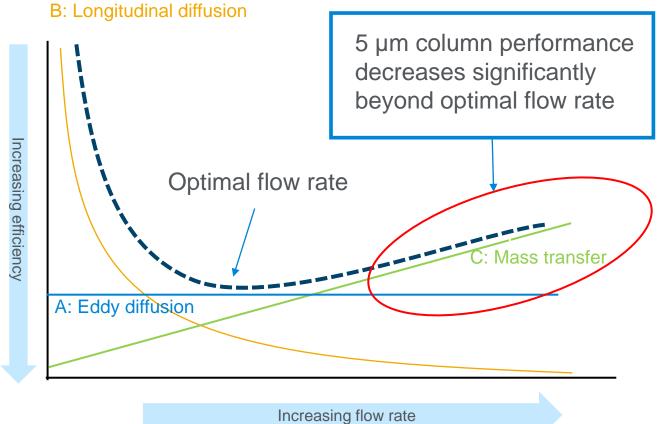
Column ID	Flow Rate	Difficult Separation (1.2 < α < 1.5)
21.2 mm	20 mL/min	20 – 70 mg
30 mm	40 mL/min	40 – 140 mg

InfinityLab Preparative HPLC Columns

Family	Phase	21.2 mm ID				30 mm ID			
		50	100	150	250	50	100	150	250
Poroshell	SB-C18	670050-902		670150-902					
Porosnell	HPH-C18	670050-702		670150-702					
ZORBAX	Eclipse Plus C18	595050-902	595100-902	595150-902	595250-902	575050-902	575100-902	575150-902	575250-902
	Eclipse Plus C8	595050-906	595100-906	595150-906	595250-906	575050-906	575100-906	575150-906	575250-906
	SB-C18	585050-902	585100-902	585150-902	585250-902	565050-902	565100-902	565150-902	565250-902
	SB-C8	585050-906	585100-906	585150-906	585250-906	565050-906	565100-906	565150-906	565250-906
	EP Phenyl-Hexyl	595050-912	595100-912	595150-912	595250-912	575050-912	575100-912	575150-912	575250-912
Pursuit XRs	C18	INF6000050X212	INF6000100X212	INF6000150X212	INF6000250X212	INF6000050X300	INF6000100X300	INF6000150X300	INF6000250X300
	C8	INF6010050X212	INF6010100X212	INF6010150X212	INF6010250X212	INF6010050X300	INF6010100X300	INF6010150X300	INF6010250X300
	Diphenyl	INF6020050X212	INF6020100X212	INF6020150X212	INF6020250X212	INF6020050X300	INF6020100X300	INF6020150X300	INF6020250X300

Phase	Surface Area (m ² /g)	Pore Size (Å)
Poroshell SB-C18 (4 µm SPP)	130	120
Pursuit XRs C18 (5 µm TPP)	440	100

Van Deemter Equation – Significance of A, B and C Terms

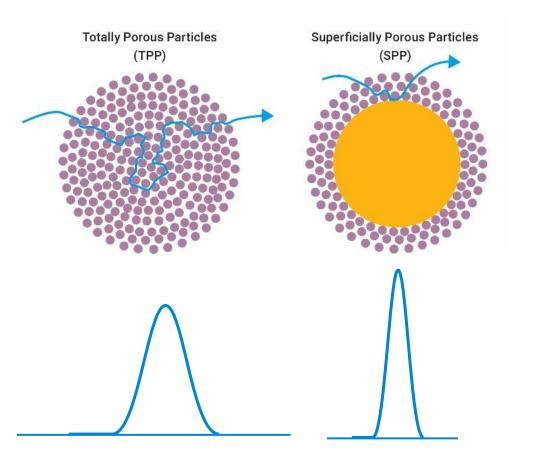


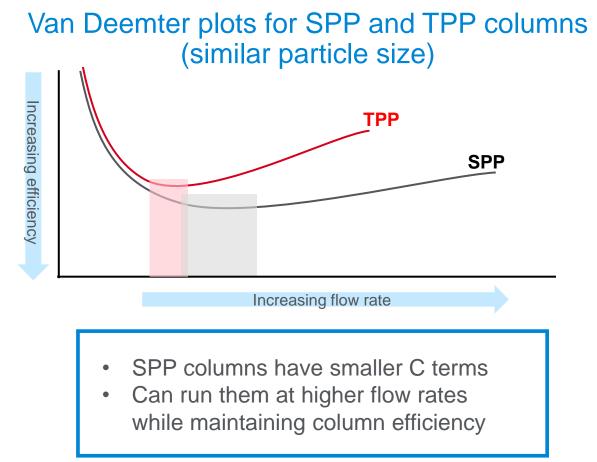
$$H = A + B/u + Cu$$

Where:

- A term: eddy diffusion
- Flow path of analyte through stationary phase particles
- Particle size, size distribution, and packing quality
- **B term:** longitudinal diffusion
- Diffusion in the mobile phase
- Only significant at very low flow rates
- **C term:** mass transfer resistance
- Analyte traveling in/out of particle
- Significant at mid-to-high flow rates

Van Deemter plot for 5 µm TPP column

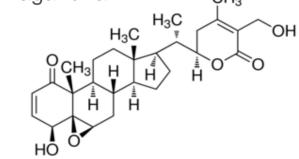




Superficially Porous Particles

Infinity Lab

- Superficially porous particle (SPP) solid core and porous outer layer
- Solid core shortens diffusion path, resulting in a narrower chromatographic peak over totally porous particle (TPP) column



Generic Purification Methods on SPP and TPP Columns

Separation of withaferin A in ashwagandha

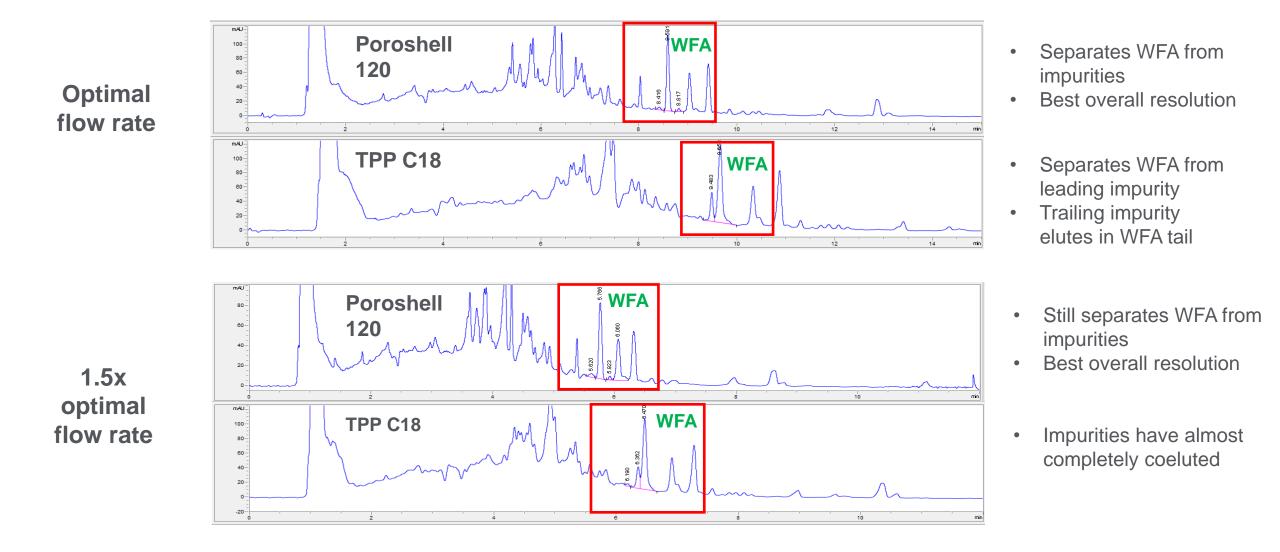
- Discovery labs regularly purify large batches of samples.
- They require small amounts (10 to 100 mg) of high purity fractions for downstream workup and characterization
- Purification of bioactive components in natural products represents a similar challenge to that of drug candidates in crude mixtures – both have complicated matrices.
- Withaferin A (WFA) is the most bioactive withanolide in ashwagandha¹.

Withaferin A²

General Run Conditions				
Instrument	ment Agilent 1290 Infinity II autoscale preparative LC system			
Sample Ashwagandha extract in 2:1 ethanol:water, 100 mg/r				
	A: Water + 0.1% formic acid			
Mobile Phase	B: Acetonitrile + 0.1% formic acid			
Injection Volume	1 mL filtered extract			

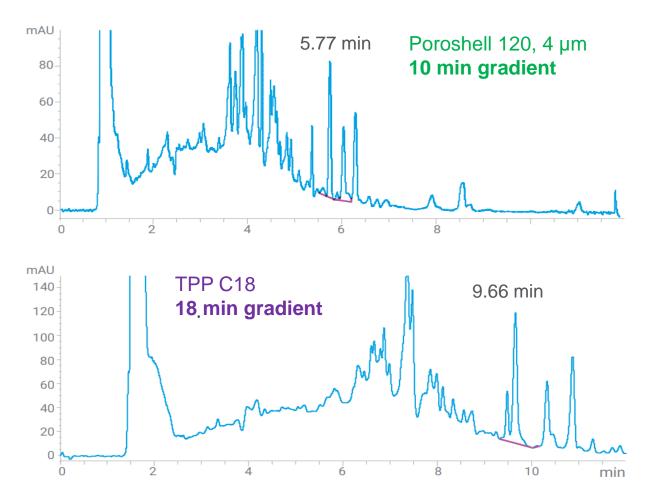
	Optimized	Elevated			
Agilent InfinityLab Poroshell 120 SB-C18 21.2 x 50, 4 µm					
Flow rate: 25 mL/min		37.5 mL/min			
Gradient:	5 to 95% B in 15 min	5 to 95% B in 10 min			
TPP C18, 19 x 150, 5 μm					
Flow rate:	17 mL/min	25.5 mL/min			
Gradient:	5 to 95% B in 18 min	5 to 95% B in 12 min			

Application note: 5994-3518EN


1. M. H. Mirjalili et al. Acta Chromatographica 25(2013)4, 745-754

2. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/structure3/198/mfcd10687098.eps/_jcr_content/renditions/mfcd10687098-medium.png

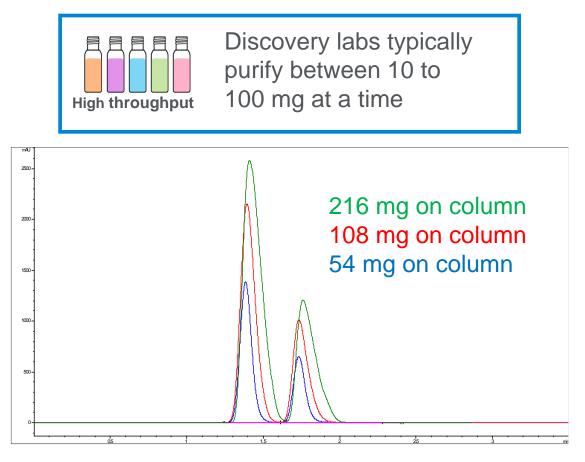
WFA Separation at Optimal and 1.5x Optimal Flow Rate


Infinity Lab

Comparing Best Methods

1.5x optimal SPP flow rate vs optimal TPP flow rate

- SPP column maintains separation at high flow rate using a generic gradient
- TPP column loses resolution between optimal and high flow rates
- The SPP method is 45% faster than the TPP method


Loading on InfinityLab Poroshell 120 SB-C18

Sample: Sulfanilamide (A) + sulfamethoxazole (B) in 50/50 acetonitrile/water

- Sample 1: 30 mg/mL A + 30 mg/mL B
- Sample 2: 60 mg/mL A + 60 mg/mL B
- Sample 3: 120 mg/mL A + 120 mg/mL B

Preparative instrument	Agilent 1290 Infinity II preparative LC system
Preparative column	InfinityLab Poroshell 120 SB-C18, 21.2 x 150 mm, 4 μm
Flow rate	25 mL/min
Mobile phase	55/45 acetonitrile+ 0.1 formic acid/water + 0.1% formic acid
Injection volume	900 µL
Wavelength	238 nm

Peaks still retain shape with over 200 mg on column

Column Dimensions and Sample Load

How can we balance throughput and loading?

Column Dimensions	Injection Volume			Column Load [mg]			
	[µL]	Density 0.6 g/mL	0.1 %	0.5 %	1.0 %		
2.1 x 50 mm, C18	1.75						
4.6 x 150 mm, C18	25						
19 x 100 mm, C18	284	17	17	85	170		
19 x 150 mm, C18	426	26	26	130	260		
19 x 250 mm, C18	710	43	43	215	430		
21.2 x 100 mm, C18	354	21	21	105	210		
21.2 x 150 mm, C18	531	32	32	160	320		
21.2 x 250 mm, C18	885	53	53	265	530		
30 x 100 mm, C18	706	42	42	210	420		
30 x 150 mm, C18	1063	64	64	320	640		
30 x 250 mm, C18	1772	106	106	530	1060		
50 x 100 mm, C18	1969	118	118	590	1180		
50 x 150 mm, C18	2953	177	177	885	1770		
50 x 250 mm, C18	4922	295	295	1475	2950		

- Data based on lab experiments
- DMSO as the sample solvent

38

 Column loads depend on separation being easy (1%), average (0.5%) or difficult (0.1%)

Preparative LC Scaling Calculator

Preparative LC Scaling Calculator | Agilent

	Analytical Method >	Preparative Method
System Description		
System name	0	
Minimum flow rate (mL/min)	0	
Maximum flow rate (mL/min)	0	
Dwell volume (mL)	0	
Injector cycle time (min)	0	
Solvent A	0	
Solvent B	0	

Analytical Gradient 🕨			Preparative Gradient				
Time (min)	Flow (mL/min)	%А	%В	Time (min)	Flow (mL/min)	%A	%В
0				0			
Add row							

Column Information		
Phase	?	
Particle size (µm)*	?	
ID (mm)*	?	
Length (mm)*	?	
Flow rate (mL/min)*	?	
Injection volume (µL)	?	
Compound concentration (mg/mL)	?	
Override preparative flow rate	?	Yes No
Desired amount of purified compound (mg)	?	
Current mass on column (mg)		
Estimated column capacity (mg)		
Column void volume (mL)		

Oligonucleotide Purification

Ion-pair reverse phase

Particle Support and Column Chemistry

Reversed Phase Column Options for Oligonucleotides

AdvanceBio Oligonucleotide

- Fully scalable column chemistry platform
- Available in analytical dimensions through 21.2 mm id preparative
- Analytical characterization post-purification
- High efficiency, 2.7 and 4 µm superficially porous particle, 120Å pore
- Silica-based C18 with novel, high pHresistant modification
- UHPLC resolution at HPLC pressure

PLRP-S

- Scalable for purification, including bulk media
- Variety of pore sizes for all sizes and types of oligos – 100Å, 300Å, 1000Å, 4000Å
- Inherently hydrophobic surface (no bonded phase alkyl ligand required for reversedphase separations, so no ligand leaching)
- Polymeric, stable up to pH 13
- High binding capacity

IP-RP: Method Development Optimizations

Common variables to consider:

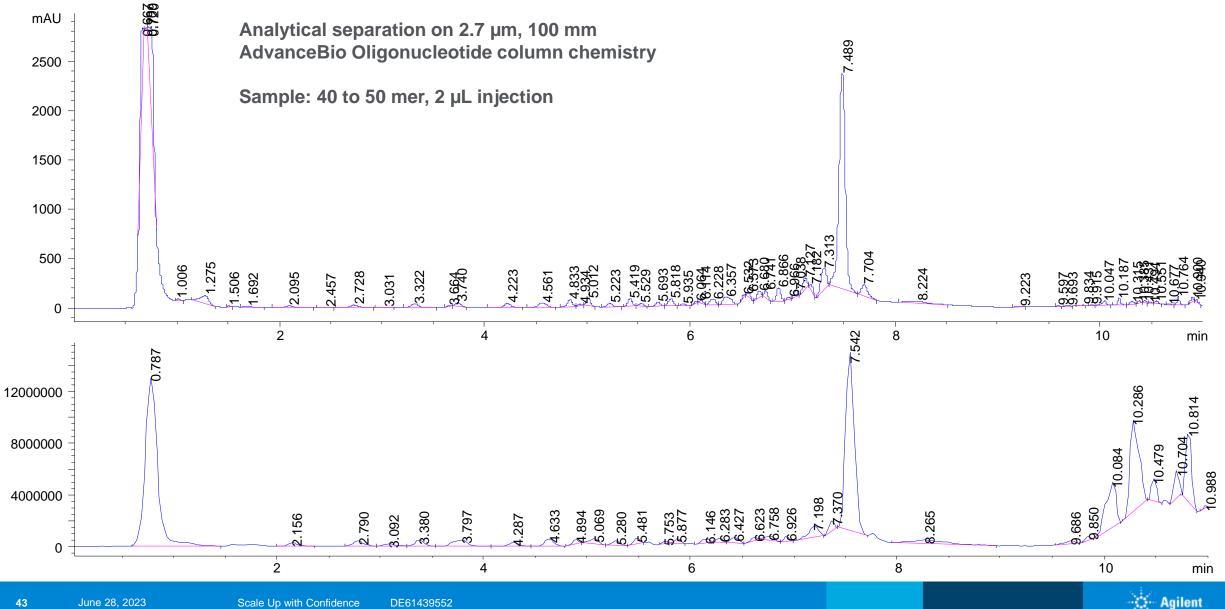
• Detector

100 mM TEAA/water-acetonitrile gradient TEA + HFIP/water-methanol gradient (TEAA reduces signal response of target compound) UV method MS method

• Ion-pairing agent selection

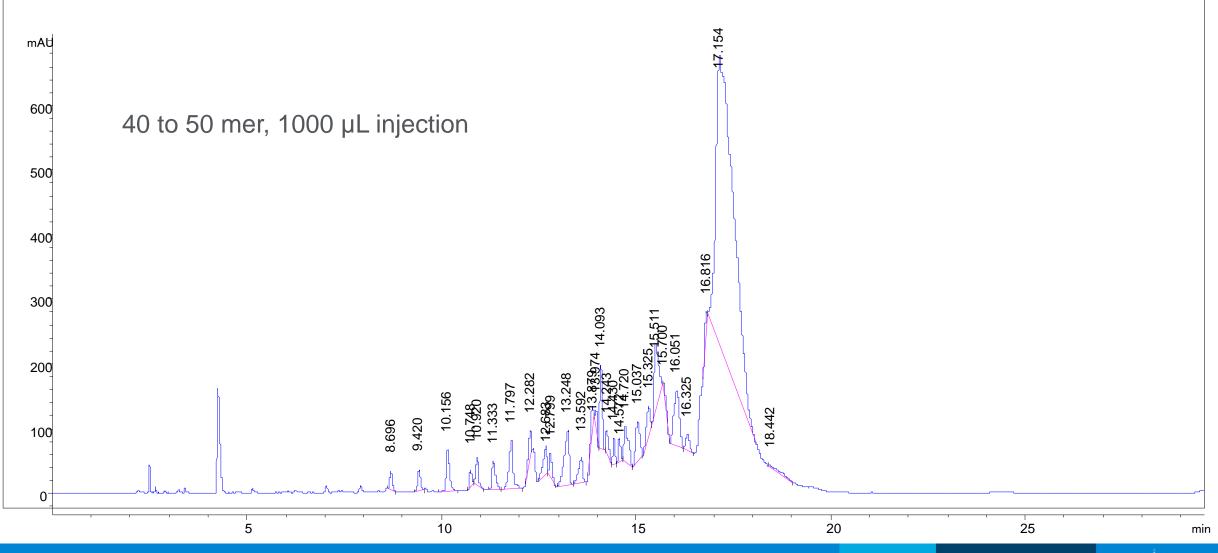
Mobile phase composition (IP agent and concentration) affects MS sensitivity and mobile phase pH

• Temperature


Elevated temperatures are used to denature the oligo and reduce secondary interactions $50 - 60^{\circ}$ C is commonly used

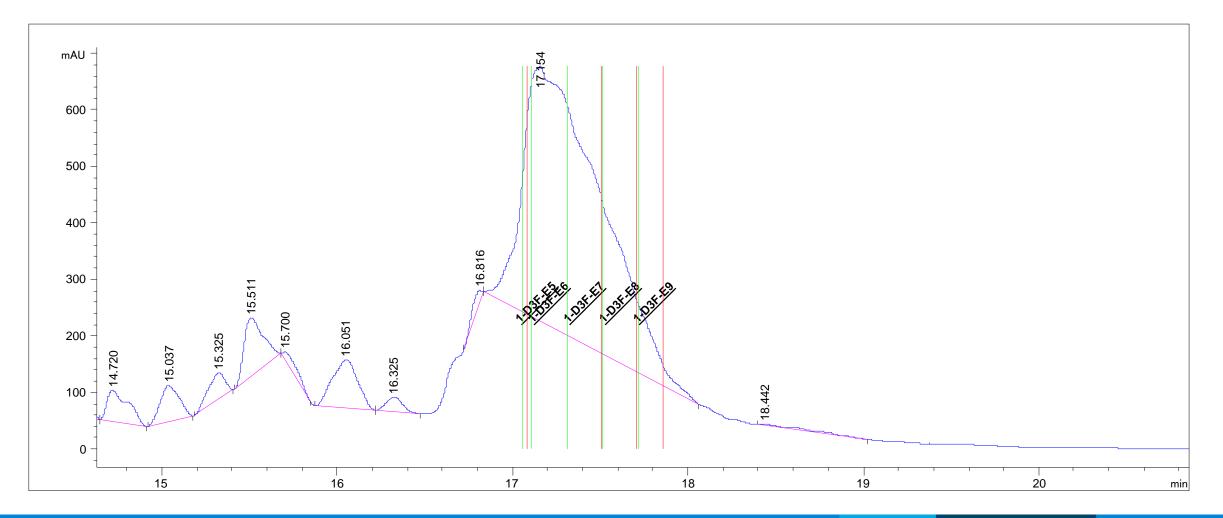
• Particle support and column chemistry

Optimal separation conditions require particle to be stabile under high pH and elevated temperatures SPP offers increased resolution at high flow rates and lower back pressures RP column chemistry (C18, C8, diphenyl) affects retention and separation of target compound from closely related impurities


Analytical Characterization to Preparative Purification for Oligonucleotides, Agilent, Infinity Lab

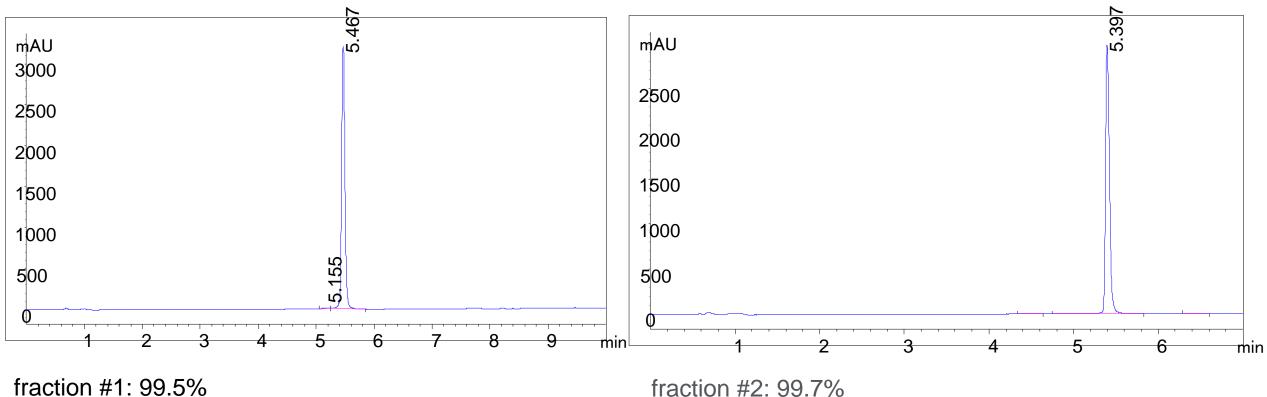
Preparative Purification of Oligonucleotides

AdvanceBio Oligonucleotide 21.2 × 150 mm, 4 µm



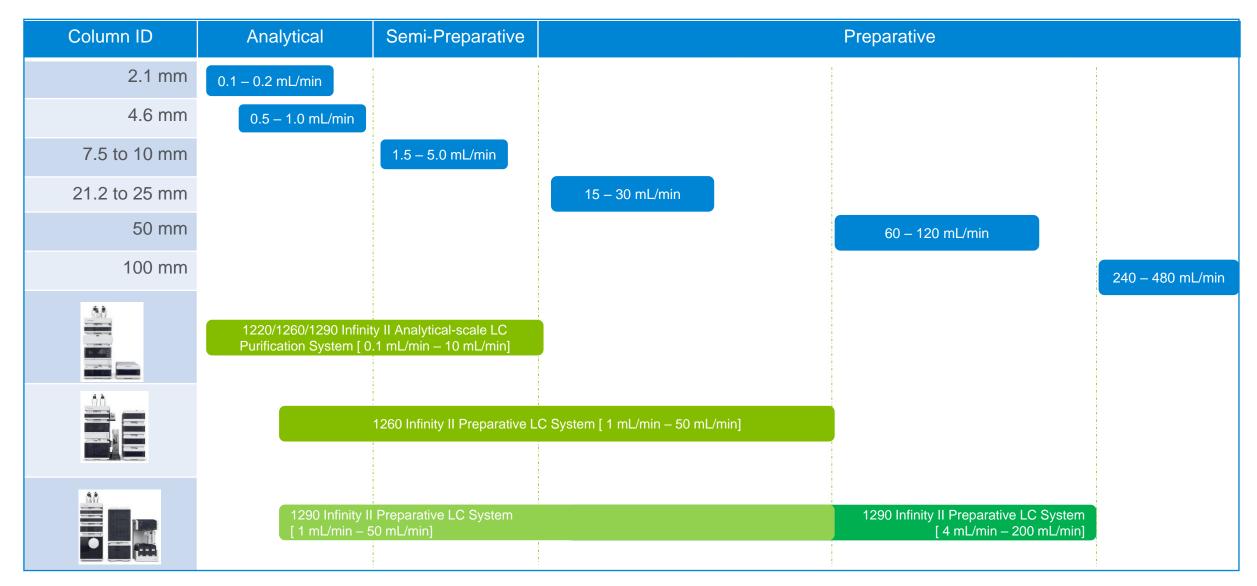
Purification of Oligonucleotides

AdvanceBio Oligonucleotide 21.2 × 150 mm, 4 µm



Analytical Characterization after Purification

Fraction reanalysis



fraction #2: 99.7%

Matching Columns to Instruments

InfinityLab Supplies Designed for Preparative LC

With prep comes more solvent

Larger volumes need careful containment

- ✓ Tubing Kits
- ✓ Sample loops
- ✓ Trays for fraction collector
- ✓ Sample containment, test tubes

Quick Reference Guide for Prep Supplies : <u>5994-2810EN</u> Stay Safe Caps flyer: <u>5991-5162EN</u>

Resources for support

- Product webpage: www.agilent.com/chem/prepcolumns
- Product brochure: InfinityLab Poroshell120 Preparative LC Columns
 <u>5994-3601EN</u>
- Primer: Principles and Practical Aspects of Preparative Liquid Chromatography <u>5994-1016EN</u>
 - A great overview that covers fundamentals and best practices
- Application note: A Tale of Two Samples
 - Part 1: Bulk Purification 5994-4707EN
 - Part 2: High-throughput Purification 5994-4708EN

Oligonucleotide resources: <u>Agilent Oligonucleotide</u>
 <u>Chromatography Solutions | Agilent</u>

Agilent InfinityLab

