

Scale Up to the Drug Discovery Fast Lane with Superficially Porous Particle Preparative LC Columns

Lakshmi Subbarao Applications Scientist Small Molecule Preparative LC Columns November 30, 2021

Learning objectives

In today's webinar, you will learn:

- Characteristics of columns that drive throughput
- What is a superficially porous particle
- How columns packed with superficially porous particles can be beneficial to the purification workflow

This webinar is intended for:

- Purification scientists
- Users of reversed phase preparative LC in small molecule drug discovery labs
- Chemists and lab managers trying to drive high resolution and throughput

What is Prep LC?

Workflow and understanding what is important in discovery environments

What is Prep LC and why do we do it?

Goal of preparative LC

Collect one or more compounds from a sample

Why do we do it?

- To obtain a "pure" product
- For compound characterization

The focus

- To get required purity (purity)
- To get required amount (yield)
- In the required timeframe (throughput)

Small molecule purification environments

High	Objectives	Workflow	Applications
Throughput	 Purifying many different samples Small amounts of material for preliminary bioactivity testing or further characterization Target – main component 	 Not much time can be spent on method development – analytical screen to determine best column, then utilize focused gradient to improve separation (if necessary) Requires small amounts of many different samples, typically 1-2 injections per sample 	 Combinatorial chemistry libraries Reaction cleanup Open access purification for medicinal chemists
Bulk	Objectives	Workflow	Applications
Purification	 Purifying one sample Significant amounts of material for more in-depth testing and characterization Target – main component or an impurity 	 Considerable time is spent optimizing method to maximize yield, purity and minimize solvent consumption Many injections of the same sample 	 Purification of target compounds (API), Natural products, etc Impurity isolation for Identification, structure elucidation and activity testing

Objectives of prep LC: purity, yield and throughput

- Throughput
- Yield
- **Purity**

Shorter run times, but collections contain impurities

You can optimize 2 of the parameters by sacrificing the third The most important parameter depends on the application

Objectives based on purification environment

Steps in developing a prep method

Infinity Lab

1. Check sample formulation	2. Screen column phases	3. Optimize the separation	4. Determine maximum sample load	5. Determine the prep column size	6. Scale conditions to prep column	7. Purify the compound(s)
Solvent, concentration, additives	Run analytical (scalar) columns	Maximize the resolution between the target compound and nearest peaks	Calculate resolution as a function of mass and volume loading	Use the analytical column loading data	Use linear scale up factor	Measure purity and amount of compound(s) obtained
Confirm LC method compatibility	Select optimum column phase	Confirm conditions compatible with compound stability/next step	Optimum loading to achieve objectives	Confirm compatible with prep instrument	Confirm compatible with prep instrument	Confirm objectives met

1. Check sample formulation

Samples are crude mixes and can have complicated matrices

2. Screen column phases

- Screening combinations of columns/mobile phases using a generic gradient
- Column chemistries are ones that have historically high success rate
- The goal is to identify a column/mobile phase combination that will have the highest chance of separation

- Running a focused gradient can tremendously improve the critical pair's separation with minimal method development
- Focused gradient reducing the slope of the original gradient specific to the peak(s) of interest

 Generic gradient (Adjusted):

 5% B: 0 to 2.0 min

 85% B: 10.0 min

 85% B: 10 to 11.5 min

 Slope: 10% B/min

 Focused gradient (Adjusted):

 5% B: 0 to 2.0 min

 25% B: 8.5 min

85% B: 8.6 to 11.6 min Slope: 3.1% B/min

Want more info? Visit http://explore.agilent.com/preparative-lc-primer

Steps 4 and 5: high throughput purification 1. Check 2. Screen 4. Determine 5. Determine 6. Scale 3. Optimize 7. Purify the sample max sample conditions to column prep column separation compound(s) formulation phases prep column load size

4. Determine max sample load

• Generally not done for high throughput work since only small amount of sample is required

5. Determine prep column size

 Instead, a column is chosen based on anticipated load. The most popular column IDs for discovery work are 21.2 mm and 30 mm ID.

Column ID	Flow Rate	Difficult Separation $(1.2 < \alpha < 1.5)$
21.2 mm	20 mL/min	20 – 70 mg
30 mm	40 mL/min	40 – 140 mg

Needs for a high throughput environment

What's important?

- Collecting enough material (10-100 mg)
- High purity
- Minimal method development

High

Throughput

Ways to improve throughput:

- Screening (step 2) analytical columns
- Size (step 5) preparative columns

Superficially Porous Particles

What they are and how they work

Understanding performance by understanding band broadening InfinityLab

How do I get the best performance from my column?

16 November 30, 2021 DE44351.3193981481

Van Deemter curves

- Van Deemter curves provide a simple way to compare columns
- Uses plate height (measure of band broadening), which is inversely proportional to plate number (N)

Experimental

- Sample
 - Void volume marker (e.g., uracil)
 - Neutral analyte (naphthalene, toluene, etc.)
- Isocratic method that produces a symmetrical peak
- Inject sample across a wide range of flow rates
- Plot plate height (H) against linear velocity (u)

Equations

$$N = 5.54 \left(\frac{t_r}{W_{1/2}}\right)^2$$
$$H = \frac{L}{N}$$

u = L/t

L = length of the column $w_{1/2}$ = peak width at half height t_r = retention time of analyte

Van Deemter equation – significance of A, B and C terms

$$H = A + \frac{B}{u} + Cu$$

Where:

- A term: eddy diffusion
- Flow path of analyte through stationary phase particles
- Particle size, size distribution and packing quality
- **B term:** longitudinal diffusion
- Diffusion in the mobile phase
- Only significant at very low flow rates
- **C term:** mass transfer resistance
- Analyte traveling in/out of particle
- Significant at mid to high flow rates

Van Deemter plot for 5 µm TPP column

Superficially porous particles

Infinity Lab

- Agilent

- Superficially porous particle (SPP) Solid core and porous outer layer
- Solid core shortens diffusion path, resulting in a narrower chromatographic peak over totally porous particle (TPP) column

Agilent InfinityLab Poroshell 120 preparative LC columns

Made with 4 µm Poroshell particles

- Symmetrical particles with smooth surfaces (\$\frac{1}{4} A term)\$
- Narrow particle size distribution (↓ A term)
- Short analyte diffusion path in/out of the porous layer (\$\$\frac{1}{C}\$ term)

Generic purification methods on SPP and TPP columns

Separation of withaferin A in ashwagandha

- Discovery labs regularly purify large batches of samples.
- They require small amounts (10 to 100 mg) of high purity fractions for downstream workup and characterization
- Purification of bioactive components in natural products represents a similar challenge to that of drug candidates in crude mixtures – both have complicated matrices.
- Withaferin A (WFA) is the most bioactive withanolide in ashwagandha¹.

Withaferin A²

	Optimized	Elevated		
Agilent InfinityLab Poroshell 120 SB-C18 21.2 x 50, 4 µm				
Flow rate:	25 mL/min	37.5 mL/min		
Gradient:	5 – 95% B in 15 min	5 – 95% B in 10 min		
TPP C18, 19 x 150, 5 μm				
Flow rate:	17 mL/min	25.5 mL/min		
Gradient:	5 to 95% B in 18 min	5 to 95% B in 12 min		
oradient.				

Link to application note:

1. M. H. Mirjalili et al. Acta Chromatographica 25(2013)4, 745-754

2. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/structure3/198/mfcd10687098.eps/_jcr_content/renditions/mfcd10687098-medium.png

WFA separation at optimal and 1.5x optimal flow rate

Infinity Lab

Comparing best methods

1.5x optimal SPP flow rate vs optimal TPP flow rate

- SPP column maintains separation at high flow rate using a generic gradient
- TPP column loses resolution between optimal and high flow rates
- The SPP method is 45% faster than the TPP method

Integrating SPP columns into the purification workflow Overcoming challenges

Challenges integrating SPP into preparative LC

Instrument compatibility

- Running conventional SPP sizes may exceed system pressure limits
- System volume causes enough band broadening to negate SPP performance benefits

Sample loading limitations

 SPP phases lack the surface area necessary for adequate sample loading

Addressing challenges – pressure and particle size

Proper particle size is key

- 4 µm SPPs provide speed and efficiency advantage over 5 µm TPPs
- SPP benefits without the high backpressure generated from a smaller particle size

Increasing Flow Rate

Addressing challenges – system volume

Agilent 1290 Infinity II autoscale preparative LC system 5-65% ACN gradient

- Efficiency benefits of 4 µm SPP preparative columns can be seen on systems with standard configuration/plumbing
- Note: regardless of particle type, proper consideration should be given to tubing size, based on the diameter of the column

Paraben Mix (in DMSO):

- Caffeine
- Methyl Paraben
- Ethyl Paraben
- Propyl Paraben
- Benzyl Paraben

Flow rate: Agilent – 25 mL/min; TPP – 16 mL/min; Mobile phase: A – water + 0.1% formic acid; B – acetonitrile + 0.1% formic acid; gradient: 5 – 65% B in 18 min; injection volume: Agilent – 80 µL; TPP – 64 µL; Detection: UV 254 nm.

Addressing challenges – sample loading

- Stationary phases with higher surface areas will generally have more retention (and more separation between peaks) than columns with lower surface areas
- Higher surface areas (~400 m²/g) are used for additional loading

Phase	Surface Area (m²/g)	Pore Size (Å)
Poroshell SB-C18 (4 µm SPP)	130	120
Vendor X C18 (5 µm TPP)	185	135
Vendor Y C18 (5 µm SPP)	200	100
Vendor Y C18	400	100
Pursuit XRs C 18	440	100

Higher surface area phases are ideal for loading

- High Throughput
- Lower surface area phases offer fast separations
- Smaller particle sizes offer higher efficiency to resolve complicated matrices

Loading on InfinityLab Poroshell 120 SB-C18

Sample: Sulfanilamide (A) + Sulfamethoxazole (B) in 50/50 acetonitrile/water

- Sample 1: 30 mg/mL A + 30 mg/mL B
- Sample 2: 60 mg/mL A + 60 mg/mL B
- Sample 3: 120 mg/mL A + 120 mg/mL B

Preparative instrument	Agilent 1290 Infinity II preparative LC system
Preparative column	InfinityLab Poroshell 120 SB-C18, 21.2 x 150 mm, 4 μm
Flow rate	25 mL/min
Mobile phase	55/45 acetonitrile+ 0.1 formic acid/water + 0.1% formic acid
Injection volume	900 µL
Wavelength	238 nm

Peaks still retain shape with over 200 mg on column

Mass loading comparison at fast flow rates Analyte - toluene

- Comparing peak widths at 10% peak height
- Adjusted flow rate and mobile phase composition on TPP C18 to match t₀ and and k' of toluene on Poroshell column
- Injection volume 400 µL
 - Determined by volume loading study (not shown) on Poroshell 120 column
- Toluene sample concentrations in 50/50 ACN/DMSO (mg/mL)
- 25, 50, 100, 150, 200, 250, 300, 350

Mass on column – 4 mg to 140 mg

Mass loading results and ROI

Peak width at 10% height vs mass on column

InfinityLab Poroshell column delivers a 64% savings and 728% ROI over TPP column

For 1,000 sample campaign:

	TPP Column	InfinityLab Poroshell 120	
Number of samples	1,000	1,000	
Number of injections per sample	3	1	
Number of injections per campaign	3,000	1,000	
Total time (analysis time x number of injections)	175 hours	58 hours	
Total lab overhead (lab overhead x total time)	\$21,875	\$7,292	
Total scientist cost (scientist cost x total time)	\$26,250	\$8,750	
Total consumables cost (consumables cost x no of injections)	\$62,621	\$23,361	
Total cost per campaign	\$110,746	\$39,402	
Purification cost per sample	\$111/sample	\$39/sample	
Cost savings	\$71,344 or \$71/sample		
% savings	64%		

		TPP Column	InfinityLab Poroshell 120
D .	Total cost per campaign + net cost of change	\$110,746	\$48,022
Return on	Agilent column saves		\$62,724
investment	ROI% (savings/net cost to change)		728%

Integrating SPP columns in purification workflow Driving throughput

Needs for a high throughput environment

What's important?

- Collecting enough material (10-100 mg)
- High purity
- Minimal method development

High

Throughput

Ways to improve throughput:

- Screening (step 2) analytical columns
- Size (step 5) preparative columns

Step 2: Improving screening by leveraging L/d_p

1. Check sample formulation 2. Screen column phases

3. Optimize separation

- 4. Determine max sample
 - load

- Preferred columns: 2.1 x 50 mm, sub-2 µm or smallest available to further improve throughput
- Small columns and fast gradients (2-3 min) are combined to minimize method development time
- Methods can be aggressive The goal is to identify a column/mobile phase combination that will have the highest chance of separation, not a final separation
- Columns within 10 L/d_p units have similar resolving power

Screen with sub-2 µm columns and then scale with L/dp (Length/particle diameter)

Aailent

Step 5: high throughput purification 2. Screen 1. Check 4. Determine 5. Determine 6. Scale 3. Optimize 7. Purify the conditions to sample column prep column max sample separation compound(s) formulation phases prep column load size

5. Determine prep column size

 Instead, a column is chosen based on anticipated load. The most popular column IDs for discovery work are 21.2 mm and 30 mm ID. If you have sufficient loading on a smaller column, do you really need a large column?

Column ID	Flow Rate	Difficult Separation $(1.2 < \alpha < 1.5)$
21.2 mm	20 mL/min	20 – 70 mg
30 mm	40 mL/min	40 – 140 mg

Using a smaller column:

- Reduces column costs (smaller columns are less expensive)
- Reduces solvent consumption and waste disposal
- Reduces fraction dry down time

Maintain efficiency at high flow rates

particles:

 \bullet

Summary

performance

counterparts

amounts of sample

Meet the loading needs of discovery and high throughput environments

Have higher efficiency than their TPP

analytical and preparative columns that:

Using conventional analytical and preparative hardware

0.75µm

35 November 30, 2021 DE44351.3193981481

Resources for support

- Product webpage: www.agilent.com/chem/prepcolumns
- Product brochure: InfinityLab Poroshell120 Preparative LC Columns
 <u>5994-3601EN</u>
- Primer: Principles and Practical Aspects of Preparative Liquid Chromatography <u>5994-1016EN</u>
 - Great overview that covers fundamentals and best practices
- Application note: Developing Fast Purification Methods <u>5994-</u>
 <u>3518EN</u>
- Part numbers:
 - <u>670050-702</u>: InfinityLab Poroshell 120 HPH-C18, 21.2 x 50 mm, 4 μm
 - <u>670050-902</u>: InfinityLab Poroshell 120 SB-C18, 21.2 x 50 mm, 4 μm
 - <u>670150-702</u>: InfinityLab Poroshell 120 HPH-C18, 21.2 x 150 mm, 4 μm
 - 670150-902: InfinityLab Poroshell 120 SB-C18, 21.2 x 150 mm, 4 μm

Agilent InfinityLab

