Confident Quantitation

Any compound, any matrix, any user.

ThermoFisher SCIENTIFIC

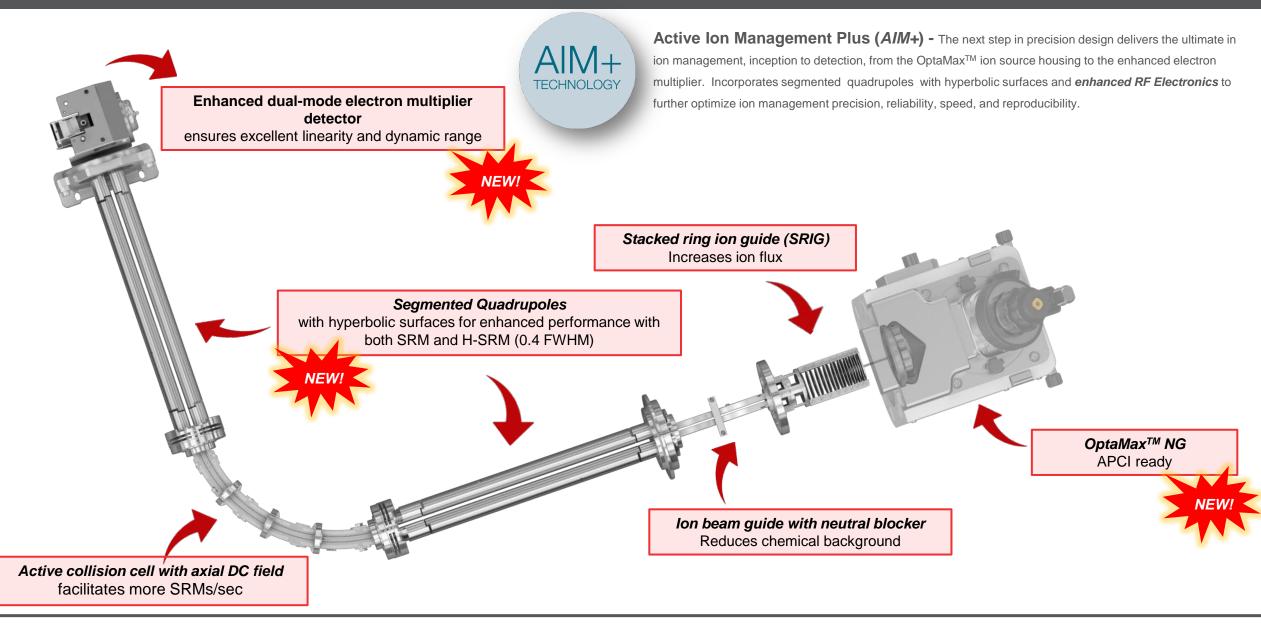
Ensuring Customer Success

Thermo Scientific[™] TSQ Altis[™] Triple Quadrupole MS and Thermo Scientific[™] TSQ Quantis[™] Triple Quadrupole MS

The world leader in serving science

Introduction to Thermo Scientific TSQ Altis MS and TSQ Quantis MS

Performance: Sensitivity, Selectivity (H-SRM)



	TSQ Altis MS High-end	TSQ Quantis MS Mid-tier
Mass Range	5-2000	5-3000
SRM/sec	600	600
Selectivity (H-SRM)	0.2 Da FWHM	0.4 Da FWHM
Sensitivity (HESI Reserpine 1 pg)	500,000:1	150,000:1
Targeted Market	Omics, Research, Pharma/Biopharma, Clinical Research and Forensic Toxicology	Environmental and Food Safety, Clinical Research, and Forensic Toxicology

Robustness, Reproducibility, Speed, Ease-of-Use, Flexibility

Thermo Scientific TSQ Quantis MS: Unprecedented Robustness, Day After Day

Thermo Scientific TSQ Altis MS: Sensitivity with Robustness, No Compromises

Active Ion Mar the ultimate in ion ma the enhanced electro and *enhanced RF E* reproducibility.

Active Ion Management Plus (*AIM*+) - The next step in *precision design* delivers the ultimate in ion management, inception to detection, from the OptaMaxTM ion source housing to the enhanced electron multiplier. Incorporates segmented quadrupoles with hyperbolic surface and *enhanced RF Electronics* to further optimize ion management precision, reliability, speed, and reproducibility.

Ion beam guide with neutral blocker Reduces chemical background

High capacity lon transfer tube (HCTT) Increases ion flux

Segmented Quadrupoles with hyperbolic surface for enhanced performance with both SRM and H-SRM (0.2 FWHM)

NFW

Electrodynamic ion funnel (EDIF) Increases ion flux

OptaMax[™] NG APCI ready

Enhanced dual-mode electron multiplier detector Ensures excellent linearity and dynamic range

Active collision cell with axial DC field

facilitates more SRMs/sec

OptaMax NG Source Housing

Benefits: Reliable and consistent performance with improved usability!

Re-designed APCI discharge assembly

- Built-in to every source (separate APCI sprayer required for APCI mode)
- Re-designed on/off switch (to improve usability)

Re-designed HESI Sprayer

- Needle adjustment is "set and forget"
- Tool available to help the user to correctly set needle protrusion


Usability and Consistency

- Vertical adjustment moved to the side for easier access
- Improved sprayer alignment and stability
- New finer threads on HESI and APCI sprayers to make installation easier

Benefits: Increased Sensitivity (more significant at higher mass range) Flat tuning for consistent and robust performance

- The use of RF only pre-filters (segments) between the entrance lens and the quadrupole minimizes the effects of fringe fields, leading to improved transmission (and therefore sensitivity) at unit and higher resolution.
- Hyperbolic surface enhances peak shape, increasing transmission at higher resolutions and masses.
- With the RF only pre-filter, the tuning of several lenses is flat across mass range allowing the voltage to be set and not tuned. This helps reducing the complexity of the tune and making the systems more consistent.

Detector

Benefits: Increased electron multiplier lifetime. Increased Uptime!

- Increased number of dynodes (21) for extended lifetime.
- Improved electron multiplier calibration routine.
- Reduced number of service visits leading to more uptime.
- Maintaining excellent linearity and dynamic range

RF Circuitry

Benefits: More compounds in the same run or longer dwells on existing method

3.5 +

- New main RF/DC electronics \bullet
- Analyze more compounds in the same time ۲ window or better Quantitation results with better ion statistics (more scans across your chromatographic peak)

Ve Help Method Editor Method Tuneline Method Duration (min) 30	37 Global Parameters 5	Scan Parameters	Summary 10		15 SRM	20		New Deter Cley		25 -		ijio o	
Lans 55M Tull Scan Q1 Fuel Scan Q1 Fuelsca for Scan Precursor Join Scan Recitar Loss Scan Star Q1 55M Q3 Q1D	138 LDNN/FEGOROGUM 24.4 139 LDNN/FEGOROGUM 24.4 130 LAGCL-100/GRIMM 24.0 131 AGCL-200/GRIMM 24.0 132 LGCL-200/GRIMM 24.0 133 AGCL-200/GRIMM 24.0 134 AGCL-200/GRIMM 24.0 135 CAGCL-200/GRIMM 24.0 136 CAGCV-200/GRIMM 24.0 136 CAGCV-200/GRIMM 24.0 136 CAGCV-200/GRIMM 24.0 136 CAGV/SGEOROGUM 24.0 136 CAGV/SGEOROGUM 24.0 137 CAGV/SGEOROGUM 24.0 138 CAGV/SGEOROGUM 24.0 139 CAGV/SGEOROGUM 24.0 130 CAGV/SGEOROGUM 24.0 130 CAGV/SGEOROGUM		Statu Table Pate 20.02 Peter 20.04 Peter 20.04	1099.322 1172.656 1271.664 631.341 730.409 829.478 95.651 1029.954 244.147 244.166 1099.594 244.147 1334.692 331.669 507.263 916.462	337 337 357 25 25 25 25 25 25 309 309 309 309 309 309 309 309 304 334		Dwell Time per Trans Dwell Time per Trans	M Properties			oe U-HIMOR 7 The 100 2004		MV
	4403 DGDSVMVLPTIPEEEAKI 24.52 4404 DGDSVMVLPTIPEEEAKI 24.52 4405 DLLAGLPAPGVEVYC[+5 24.64	1 1 1	Positiv 915.445 Positiv 915.445 Positiv 876.796	1013.515 1126.599 470.272	33.4 33.4 27.4		200	Copy Experiment Time		5	10	15 Retention Time	20
	4405 DLLAGIPAPGVEVYC(-\$ 24.64 4407 DLLAGIPAPGVEVYC(-\$ 24.64 4408 DLLAGIPAPGVEVYC(-\$ 24.64 4409 DLLAGIPAPGVEVYC(-\$ 24.64 4410 LSC(-\$8.0]TASGFTFGD 24.66 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Positiv 876.796 Positiv 876.796 Positiv 876.796 Positiv 876.796 Positiv 719.652 m	796,468 1023.522 1200,635	27.4 27.4 27.4 27.4 27.4 22.3		200 30 5 10 15 _{Time (min)} 20 25		1	P			

965 peptides, 4762 transitions, 1 min RT

window, 35 minute method

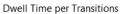
What do Thermo Scientific[™] QqQs have to make them easier to use?

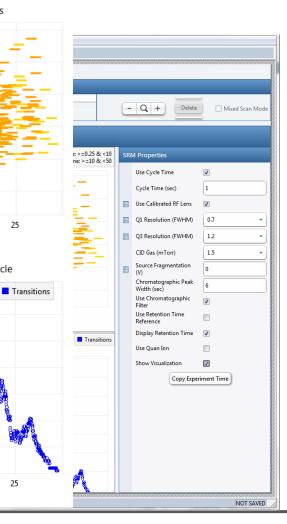
• Dynamic Retention Time Adjustment: on-the-fly RT window shifts to accommodate targeted workflows

Method Edit	Global Paramet	ers Scan Para	meters	Summary	/						6-01-01-01-01-01-01
Method Timeline									Reference peptides		
Method Duration	· · · · · · ·	5.7	1	1.3		17 SRM		22.7			New
(min)									are used to detect	- Q + C	Delete
34									shifts in RT		Clear
	Experiment 1										
Scans	_				SR	M Table		Ľ	Import Export 🕂 🗶	RM Properties	
SRM	Compound	Retention Time (min)	RT Window (min)	Polarity	Precursor (m/z)	Product (m/z)	Collision Energy (V)	Reference Thresh 💌		Chromatographic Peak Width	12
	1 SSAAPPPPPR (heavy)(+2		5	Positive	493.768	476.286 573.338	18.9	5.0e4		(sec)	
Full Scan Q1	2 SSAAPPPPPR (heavy)(+2 3 SSAAPPPPPR (heavy)(+2		5	Positive	493.768	670.391	18.9	5.0e4		Use Cycle Time	~
Full Scan Q3	4 LMELHGEGSSSGK(+3)	18.27	5	Positive	444.547	544.254	14.6	5.0e4		Cycle Time (sec)	1
	5 LMELHGEGSSSGK(+3)	18.27	5	Positive	444.547	609.775	14.6	5.0e4		Use Calibrated RF Lens	2
Product Ion Scan	6 LMELHGEGSSSGK(+3)	18.27	5	Positive	444.547	708.316	14.6	5.0e4	Orea elle r DT wire de we	Q1 Resolution (FWHM)	0.7
Precursor Ion Scan	7 TASEFDSAIAQDK (heavy))(22.41	5	Positive	695.832	855.43	25.8	5.0e4	Smaller RT windows	Q3 Resolution (FWHM)	0.7
	8 TASEFDSAIAQDK (heavy))(22.41	5	Positive	695.832	1002.498	25.8	5.0e4	can be used for other		-
Neutral Loss Scan	9 GLILVGGYGTR (heavy)(+:	2 27.03	5	Positive	558.326	620.303	21.1	5.0e4	targets, increasing	CID Gas (mTorr)	1.5
SIM Q1	10 GLILVGGYGTR (heavy)(+:	2, 27.03	5	Positive	558.326	719.371	21.1	5.0e4		Source Fragmentation (V)	0
	11 GLILVGGYGTR (heavy)(+:	2, 27.03	5	Positive	558.326	832.455	21.1	5.0e4	dwell time	Use Chromatographic Filter	V
SIM Q3	12 AVFVDLEPTVIDEVR(+3)	30.66	5	Positive	567.973	464.759	18.3	5.0e4		Use Retention Time Reference	V
QED	13 AVFVDLEPTVIDEVR(+3)	30.66	5	Positive	567.973	631.341	18.3	5.0e4		Display Retention Time	5
	14 TASEFDSAIAQDK (heavy) 15 AVFVDLEPTVIDEVR(+3)	30.66	5	Positive	695.832 567.973	740.403 928.51	25.8 18.3	1.0e4		Use Quan Ion	
CO	16 SSAAPPPPPR (heavy)(+2		5	Positive	493.768	379.233	18.9	Not used		Show Visualization	-
	17 SSAAPPPPPR (heavy)(+2		5	Positive	493.768	741.428	18.9	Not used			
	18 SSAAPPPPPR (heavy)(+2		5	Positive	493.768	812.465	18.9	Not used		Copy Exp	ariment 1
	19 SSAAPPPPPR (heavy)(+2) 15.8	5	Positive	eo	899.497	18.9	Not used			
	20 SSAAPPPPPR(+2)	15.8	1	Janove	488.764	369.224	18.9	Not used			
	21 SSAAPPPPPR(+2)	15.8	1	Positive	488.764	466.277	18.9	Not used			
	22 SSAAPPPPPR(+2)	15.8	1	Positive	488.764	563.33	18.9	Not used			
	23 SSAAPPPPPR(+2)	15.8	1	Positive	488.764	660.383	18.9	Not used			

• Result: More peaks detected without being cut-off or missed; less manual method updating

- Minimum dwell times shown, so adjustments can be made before data are generated!
- Number of transitions vs retention time plotted for user to see

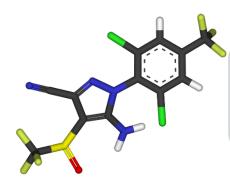

D


- BONUS:
 - It is interactive!!

Take home message:

- Visualization allows the user to adjust the method BEFORE it is run, resulting in better data!
- Dwell times are shown, before • poor-quality data can be generated!

Help	1										ie: >=0.25 & <1 me: >=10 & <5		_
A A A A A A A A A A A A A A A A A A A	ethod Edi	tor	Global Parame	eters Scan	Parameters		Summary		1200				
	hod Timeline												- 1
	(min)	#		5		10			ន្ល 1000	-			
		1 🦳							Σ			-	-
1000	30								SI 800 -	. =			
	AT	Exp	eriment 1						0001 BSS	2			
	Scans				SRM Ta	ble							
	SRM	4047	Compound LSC(+30.0JAASGF1F3	Retention Time	RT Window	Polarity Positive	Precursor (m/z) 705-545	Product (m ozo.ooz	600	57			-
	Full Scan Q1	4648	LSC[+58.0]AASGFTFS	27.97	1	Positive	765.343	931.428					-
	Tun Scan Q1	4649	LSC[+58.0]AASGFTFS	27.97	1	Positive	765.343	966.946	400				
	Full Scan Q3	4650	LLDLVFLLDGSSR(+2)	28.11	1	Positive	724.411	406.204					
		4651	LLDLVFLLDGSSR(+2)	28.11	1	Positive	724.411	521.231	5	1	.0 15	20)
	Product Ion Scan	4652	LLDLVFLLDGSSR(+2)	28.11	1	Positive	724.411	634.315	,	1	IJ	Time (min)	,
	Precursor Ion Scan	4653	LLDLVFLLDGSSR(+2)	28.11	1	Positive	724.411	747.4					
		4654	LLDLVFLLDGSSR(+2)	28.11	1	Positive	724.411	894.468					
	Neutral Loss Scan	4655	EELATFDPVDNIVFNN	28.12	1	Positive	1029.507	894.498		I	Number of T	ransitions	pe
		4656	EELATFDPVDNIVFNN	28.12	1	Positive	1029.507	1109.588	350				
	SIM Q1	4657	EELATFDPVDNIVFNN	28.12	1	Positive	1029.507	1141.083	500		34	8	
	SIM Q3	4658	EELATFDPVDNIVFNN	28.12	1	Positive	1029.507	1198.596	200			1	
		4659	EELATFDPVDNIVFNN	28.12	1	Positive	1029.507	1358.173	300		🔒 🖉 🦓	88 88	
	QED	4660			1	Positive	1030.188	402.235		8	A 6° 💕	88 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		4661	VYGSFLVNPESGYNVS		1	Positive	1030.188	986.515	Se 250		7 W	- 💥 🗓	
		4662			1	Positive	1030.188	1149.579	Isiti	8 B	8 🕷	୍ୟ 🖁	8
Contraction of the Index		4663			1	Positive	852.072	439.23	Number of transitions	8			8 .
100000		4664			1	Positive	852.072	538.298	of	8			
1000		4665			1	Positive	852.072	970.952	ष्ट्र 150 o				-
10100408		4666			1	Positive	852.072	1027.494	Ē 👶	24			. С
24284		4667	SDQIGLPDFNAGAME		1	Positive	852.072	1176.576	z 100	88°			
10100		4668			1	Positive	690.681	707.36	8	8			
1000		4669	EDLIWELLNQAQEHF	28.98	1	Positive	690.681	800.399	50				
10.00		4670	EDLIWELLNQAQEHF	28.98	1	Positive	690.681	816.4	~ 8				
1000		4671	EDLIWELLNQAQEHF	28.98	1	Positive	690.681	856.941	D				
		4672	EDLIWELLNQAQEHF	28.98	1	Positive	690.681	1058.501) 15 T		


Confident Quantitation

Any compound, any matrix, any user.

Robust Consistent Reliable

Fipronil in Eggs

What is Fipronil?

Fipronil is an insecticide commonly used against fleas, ticks, cockroaches, ants, termites, etc. It kills insects by disrupting their CNS and is used in various insectcontrol products for both agricultural and domestic use

Why in Eggs?

Fipronil was mixed with Dega-16, used for red mite treatment commonly found in poultry farms.

The contaminated eggs originated from Dutch farms. They have since been reported in 15 other countries and Hong Kong.

Should I be worried?

Ingestion of large amounts can lead to kidney, liver, and thyroid damage. The amounts typically present in eggs are very low, however, it is a huge safety concern. What's Needed?

Robust, sensitive, reliable analysis and quantitation of Fipronil and Fipronil Sulfone in eggs

Matrix Matched Calibration for UHPLC-MS/MS on a Thermo Scientific TSQ Quantis MS

Fipronil	Compound name	Recovery 0.5 µg/kg spik		Recove 1 μg/kg spi			ecovery (%) Ig/kg spike level	
Y = 3.949e4X - 3.569e3; R*2: 0.9960; Origin: Ignore; W: 1/X; Area	Fipronil (434.9> 322.9)	104		89)	99		
3500000 3000000 25000000 ⁸ €2000000	Fipronil sulfone (450.9> 415.0)	99		95		102		
1500000 1000000 500000	Compound name	LOD [µg/kg]	LO([µg/k			Repeatability (% 5 µg/kg spike level		
0 0 10 10 20 30 40 50 10 70 80 90 100 10 10 10 10 10 10 10 10 10 10 10 1	Fipronil (434.9> 322.9)	0.1	0.5	8.5	5		6.1	
	Fipronil sulfone (450.9> 415.0)	0.1	0.5	7.7	7.7		6.4	
Fipronil sulfone								
Y = 2.785e4X - 7.022e3; R ³ 2: 0.9966; Origin: Ignore; W: 1/X; Area	Ion Ratio Calculations	Fipronil (434.9> 249.9)		Fipronil (434.9> 398.84)	Fipronil sulfone (450.9> 282.00)		Fipronil sulfone (450.9> 243.84)	
2200000 2000000- 1800000- g1600000- 41400000-	lon ratio* (%) Standard 100 ng/ml	24.4		13.1	78.1		23.6	
1200000- 1000000- 800000- 400000-	lon ratio* (%) Spike 0.5 μg/kg	26.0		14.8	83.4		29.4	
200000 0 10 20 30 40 50 60 70 80 90 100 ng/mL	lon ratio repeatability (RSD %)* 0.5 μg/kg spike level	9.1		16.3	4.4		18.9	
	lon ratio repeatability* (RSD %) 5 µg/kg spike level	4.4		4.5	1.8		5.8	

Reproducibility and Long-term Stability Test

thermoscientific

Rapid analysis of fipronil and fipronil sulfone in eggs by liquid chromatography and triple quadrupole mass spectrometry

Authors

Susanne Sales, Siegrun Mohring and Michal Godula

Thermo Fisher Scientific, Special Solutions Center, Dreieich, Germany

Keywords

Fipronil, fipronil sulfone, eggs, LC-MS, Accucore aQ, TSQ Quantis, UltiMate 3000 RSLC

Goal

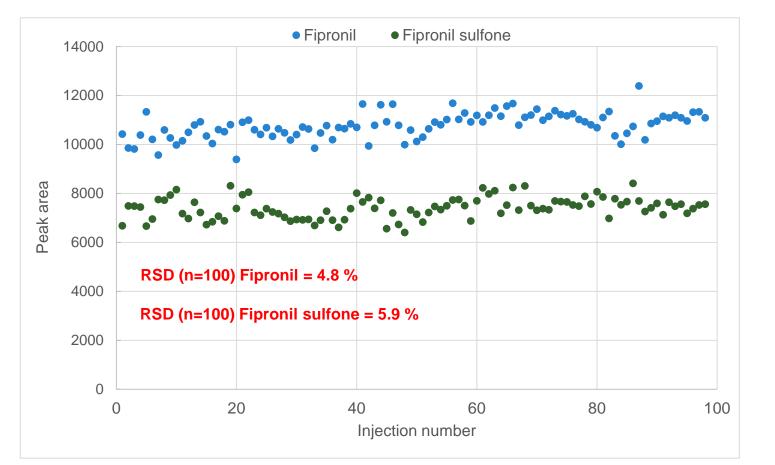
Develop a quick and simple method for the determination of fipronil and fipronil suffore in eggs using an in-house modified QuECHERS acetonithe extraction protocol and LC-MS/MS determination.

Introduction

Recently, it was reported that millions of eggs contaminated with the insecticide fipronil have been distributed to more than 17 countries.¹ On July 20th 2017, it was made public that in some cases the pesticide fipronil was mixed with another formulation and sprayed on chickens against ticks, fleas and lice.¹ As the determined levels were in some cases substantially higher (up to 1.2 mg/kg) than the EU MRL of 0.005 mg/kg for the sum of fipronil sufficient is along a demand for quick and efficient methods for the determination of both substances in egg matrix and potentially in chicken meat.

This brief presents a quick and simple method for the determination of fipronil and fipronil sulfone in eggs using an in-house modified QuEChERS acetonitrile extraction protocol.

Experimental


Sample preparation

Egg samples purchased in a local store were extracted using the procedure described in Figure 1.

Sample preparation consumables

- 50 mL conical sterile polypropylene centrifuge tubes, P/N 339652
- 15 mL conical sterile polypropylene centrifuge tubes; P/N 339650
- Thermo Scientific "HyperSep" dispersive SPE Mylar pouch 4000 mg magnesium sulfate and 1000 mg NaCl, 50 pk, P/N 60105-340
- · Magnesium sulfate, 99%, for analysis, anhydrous; 12196721

Thermo Fisher SCIENTIFIC

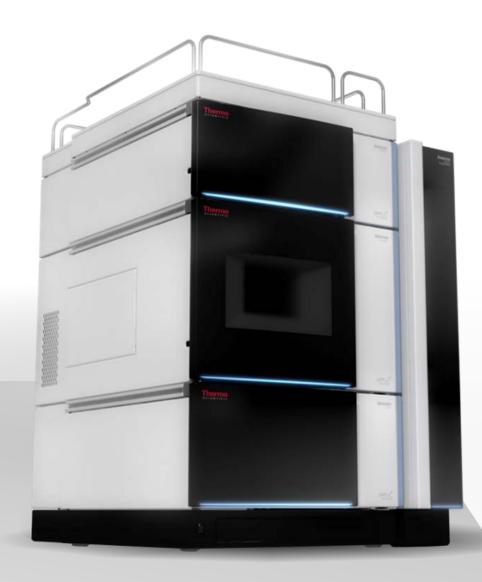
Confident Quantitation

Any compound, any matrix, any user.

ThermoFisher SCIENTIFIC

LC-MS/MS Quantitation of ~100 Drugs of Abuse in Urine in Under Two Minutes on the Thermo Scientific[™] TSQ Quantis[™] MS

Why High-throughput LC-MS/MS for Drugs of Abuse Analyses?



Large number of samples

- Need to reduce analysis times
- Reduce false positives (immunoassays)
 - LC-MS/MS has high selectivity
- Reduce costs
 - Multi-class drugs of abuse require multiple immunoassays
 - Still may require LC-MS/MS confirmation
- Thermo Scientific[™] Vanquish[™] Horizon UHPLC and TSQ Quantis[™] MS can meet these requirements

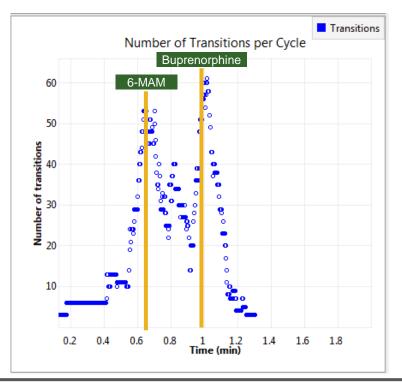
Thermo Scientific Vanquish Horizon UHPLC

Vanquish Horizon UHPLC Platform:

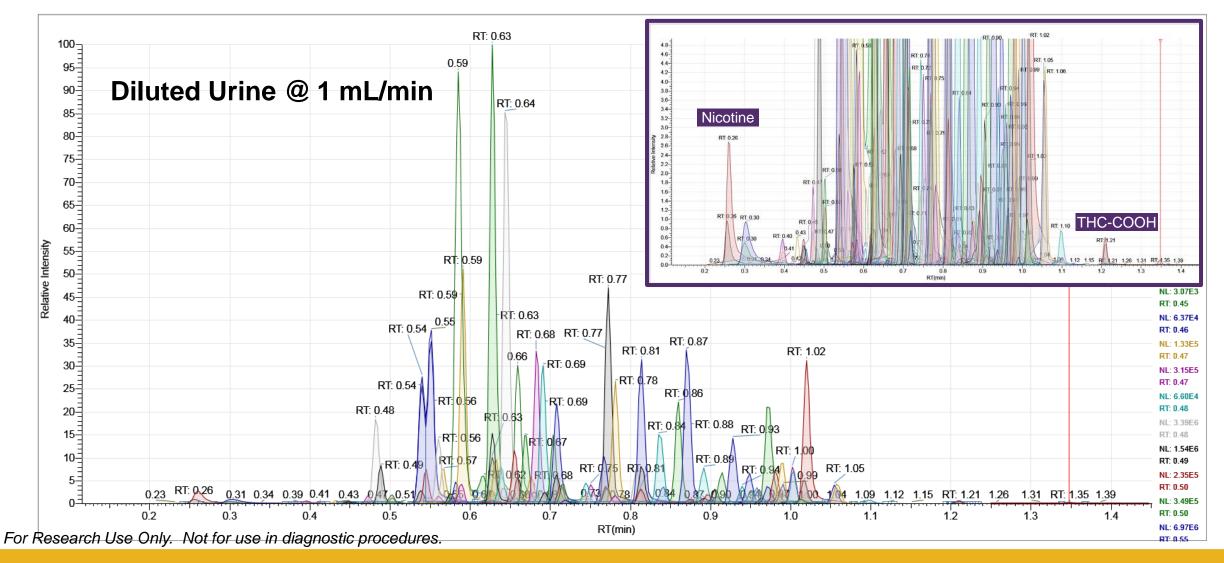
- Maximize UHPLC separations with 1500 bar (22,000 psi) pump pressure limit
- Unmatched retention time performance via parallel dual piston principle
- Ultra-low Gradient Dead Volume (35 uL) for faster separations
- Viper-based, tool-free fluidic connections
- Biocompatible, iron-free flow path
- Sample pre-compression for better injection reproducibility and longer column lifetimes
- Standard AS capacity: 4 racks (216 vials); expandable Charger module for up to 20 well plates)
- New column thermostatting technology
- Removable doors for easy access

Experimental Design – Liquid Chromatography

- Thermo Scientific[™] Vanquish[™] Horizon UHPLC
 - Column: 2.1 x 50 mm, 1.9 um Hypersil Gold AQ
 - Column Temp: 40 C
 - Mobile Phase: [A] H_2O + 0.1% HCOOH; [B] ACN + 0.1% HCOOH
 - Flow Rate: 1.0 mL/min (no split)
 - Gradient: see table
 - Injection Volume: 2 uL

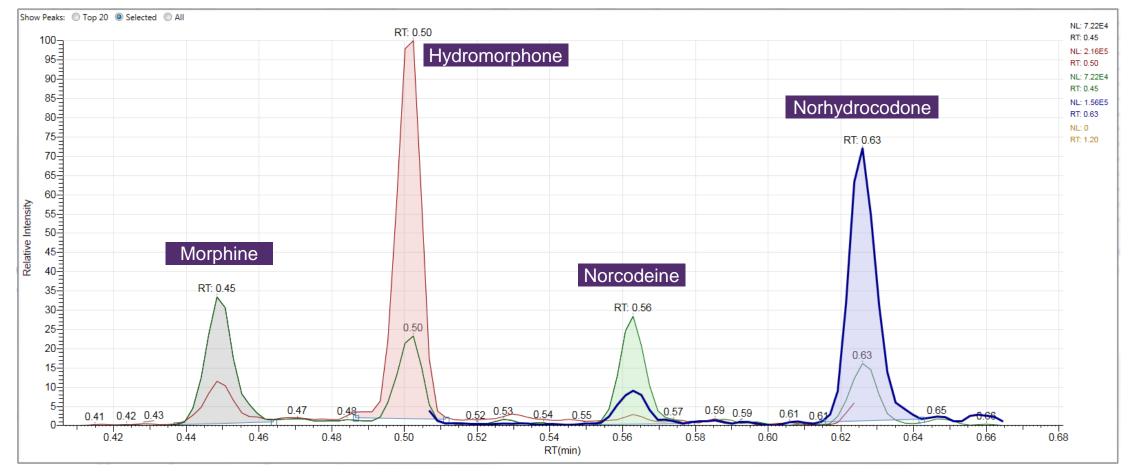

No	Time	Flow [ml/min]	%В	Curve
1	0.000		Run	
2	0.000	1.000	0.0	5
3	0.400	1.000	22.5	5
4	0.950	1.000	75.2	5
5	1.450	1.000	75.2	5
6	1.470	1.000	0.0	5
7	1.490	1.000	0.0	5
8	1.510	1.200	0.0	5
9	2.150	1.200	0.0	5
10	2.200	1.000	0.0	5

Note: total LC runtime is 2.2 minutes for ~100 drugs of abuse

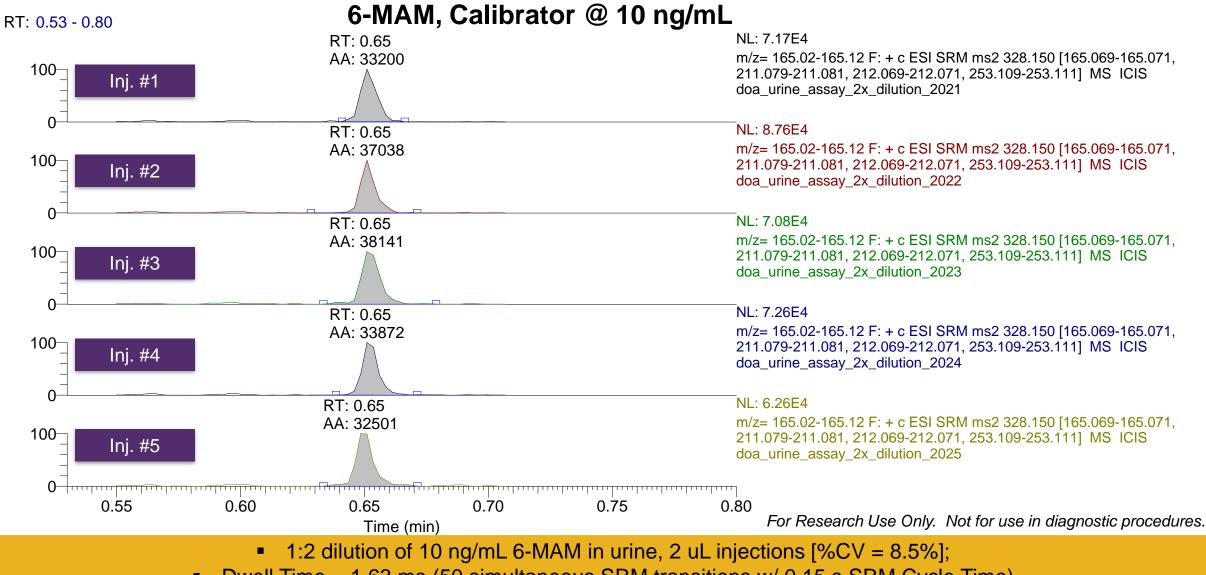

Experimental Design – Mass Spectrometry

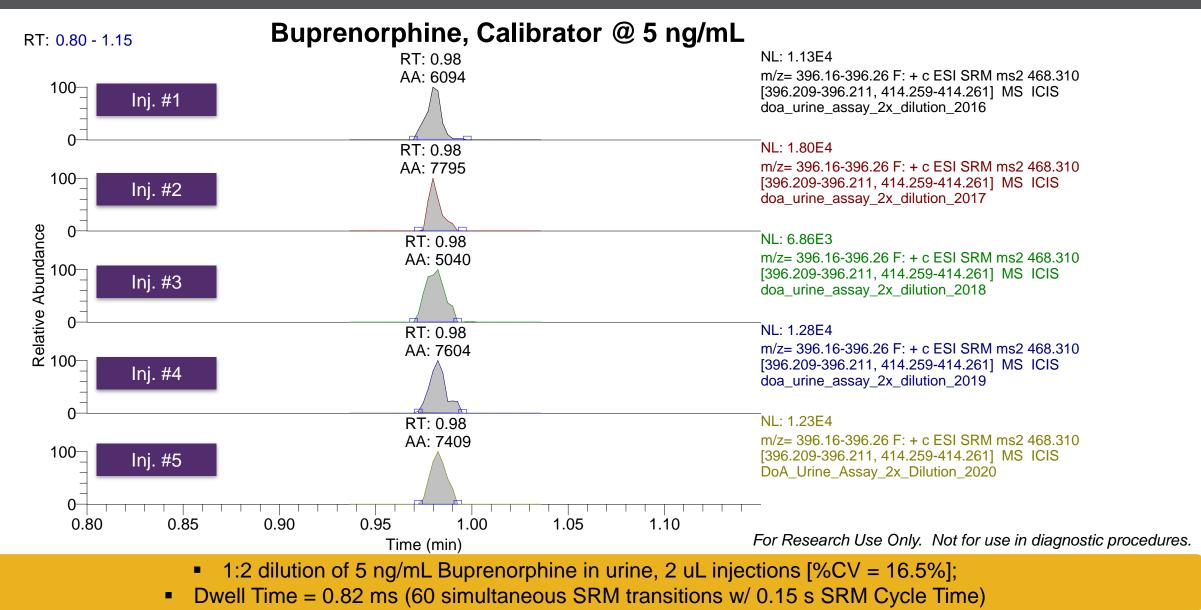
- Thermo Scientific[™] TSQ Quantis[™] MS
 - Ionization Mode: HESI, Positive ion mode
 - MS Acquisition Mode: Selective Reaction Monitoring (SRM) see # Transitions vs. RT below
 - Cycle time: 0.15 s
 - Quad Isolation (Q1,Q3) = Unit (0.7 Da FWHM)

Note: elution of 6-MAM & Buprenorphine occur at the times of highest # SRM transitions (i.e., during lowest dwell times)



SRM chromatograms of ~100 drugs of abuse in under 1.3 minutes [THC-COOH elutes at 1.21 min, inset]


Separation of opiate isomers @ m/z 286


For Research Use Only. Not for use in diagnostic procedures.

Opiate isomers at m/z 286 are well separated in under 12 s [typical LC peak = 1.2 s wide]

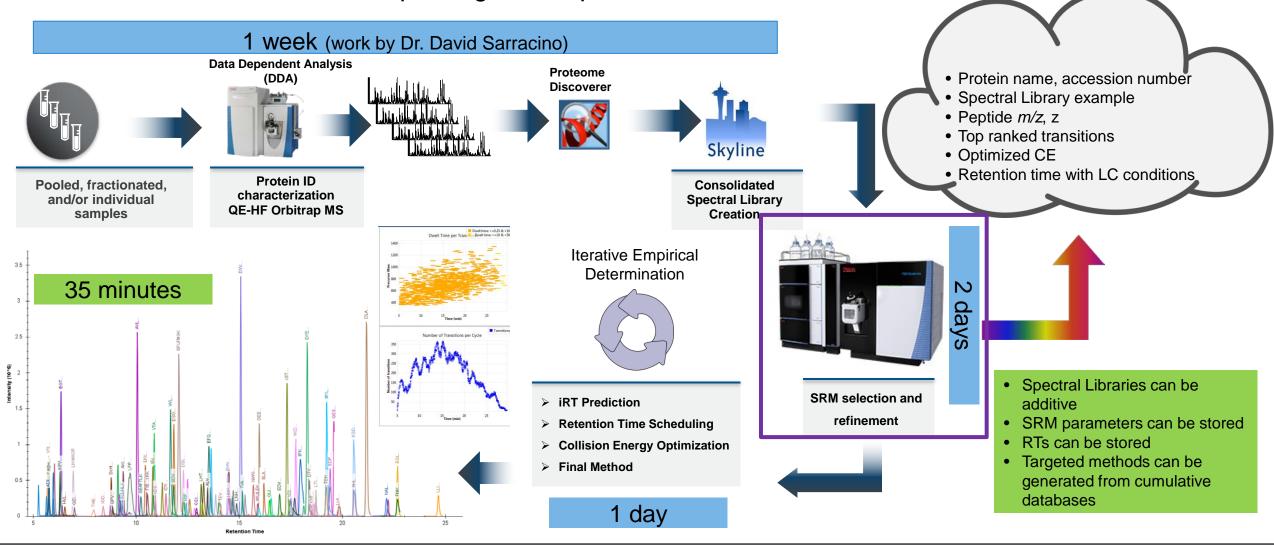
Dwell Time = 1.63 ms (50 simultaneous SRM transitions w/ 0.15 s SRM Cycle Time)

Confident Quantitation

Any compound, any matrix, any user.

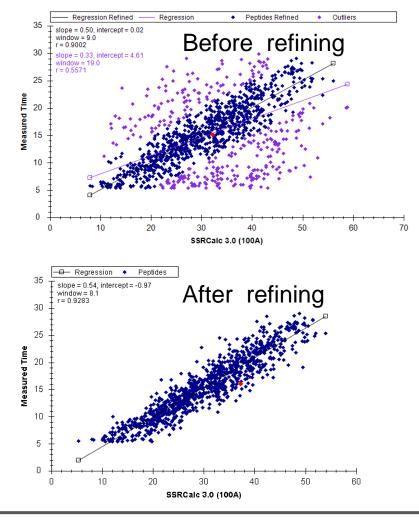
ThermoFisher SCIENTIFIC

Sensitive, Robust, Reproducible Peptide Quantitation Workflows

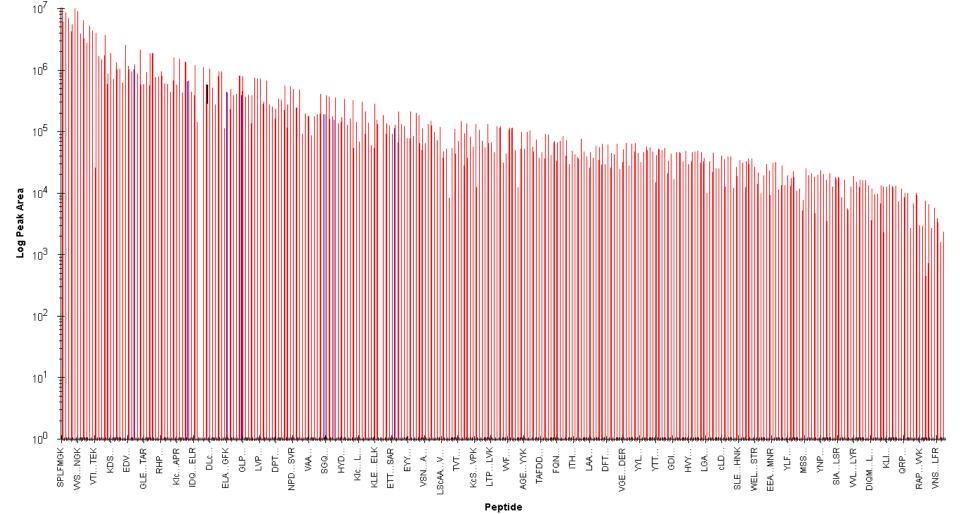

Targeted Peptide Quantitation Workflow Solutions with Thermo Scientific[™] TSQ Altis[™] MS

- They're FAST!
- They're cost effective for targeted work!
- They are DESIGNED TO TARGET your analytes!!
- They are simple to use for targeted analyses!!!
- Once method development is done, DATA ANALYSIS is EASIER!!!
- Sensitivity and robustness of the QqQ platform is well demonstrated!!

Transitioning Discovery Data to Targeted Data on the Thermo Scientific TSQ Altis MS

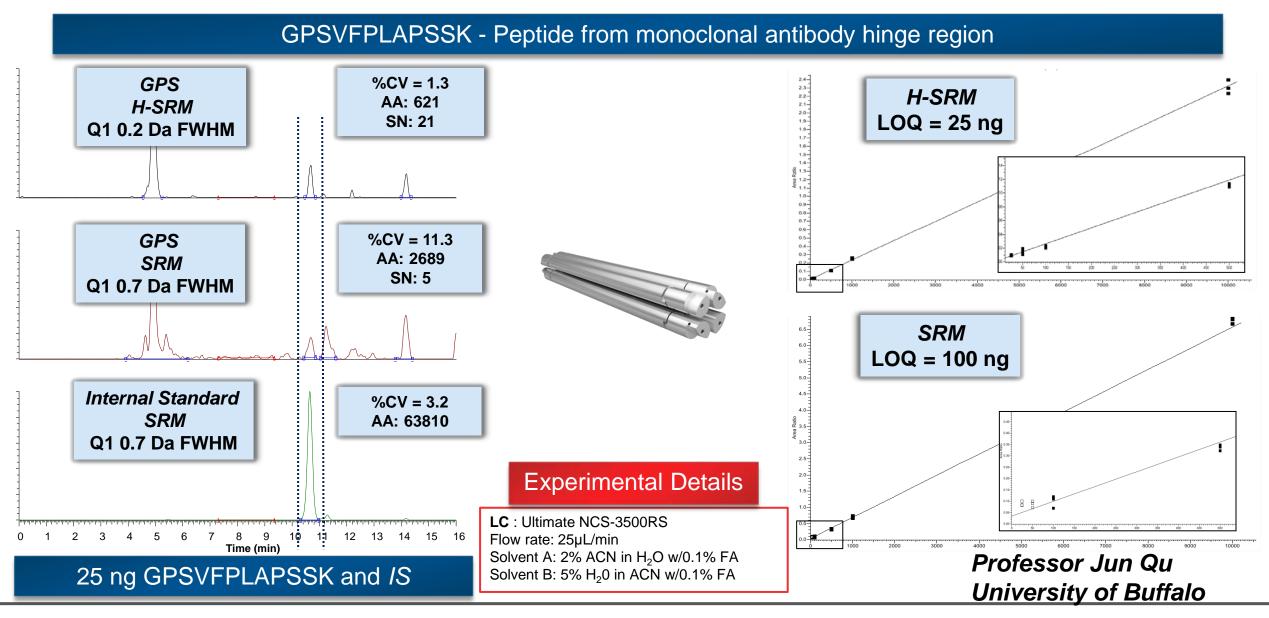

A workflow from HRAM to QqQ Targeted Peptide Quantitation

SRM Refinement and Selection for 950 peptides from spectral libraries


- Human proteome was digested in silico and compared to spectral libraries
- ~1200 tryptic peptides matched a spectral library hit
- 53 untargeted methods set up for SRM refinement
 - 2 charge states for most peptides
 - 8-10 transitions per precursor
 - ~20,000 transitions
 - 31 hours of acquisition time
 - 10-15 hours of analysis time
- Result:
 - 950 plasma peptides + 15 PRTC peptides
 - 4762 transitions in a 35 minute run
 - RT scheduling with 1 min windows; dRT so no RT updates necessary

Peaks detected over 3-fold range intensity from digested neat plasma

- Peptides ID'd in Q Exactive HF analysis of fractionated plasma (48 BRP fx)
- Intensity ranking for each peptide on the Altis spans ~3 log
- Blue bars indicate PRTC peptides spiked in (5 fmol/uL plasma digest; 1 ug/uL plasma concentration)



Detection of changes in peptide intensity due to plasma/serum processing

SCIENTIFIC

Superior Sensitivity with H-SRM (0.2 Da FWHM) – GPSVFPLAPSSK

Thermo Fisher

Confident Quantitation – Any compound, Any Matrix, Any User

Team Confident Quantitation

- Dr. Mary Blackburn (Sr. Platform Manager, TSQ)
- Dr. Claudia Martins (Product Manager, Triple Quadrupole MS)
- Dr. Alan Atkins (Technical Trainer)
- Dr. Sue Abbatiello (Product Specialist)
- Dr. Neloni Wijeratne (Product Specialist)
- Dr. Eric Huang (Product Specialist)
- Dr. Deb Bhattacharyya (Sr. Marketing Manager, Triple Quadrupole MS)

Confident Quantitation

Any compound, any matrix, any user.

Confident Quantitation

Any compound, any matrix, any user.

TSO QUAN

scientifi