Thermo Fisher S C I E N T I F I C

PFAS by CIC workflow

Kirk Chassaniol Product Applications Manager – IC/SP

The world leader in serving science

What does CIC replace?

Combustion (Oxygen) Bombs

 All hydrocarbons are oxidized to carbon dioxide and water by the reaction, and all sulfur compounds are converted to soluble forms and absorbed in a small amount of water placed in the vessel.

Wickbold Apparatus

 Consists of a shell oven, a solid state burner, a burning chamber, a cooling device, an absorption tube, a solution tank, a rinsing device, and a flask for decomposition solution

Schoniger Flask

• Combustion of a sample in pure oxygen, followed by the absorption of the combustion products by a solution of sodium hydroxide

Microwave-Induced Combustion (MIC)

 Burns the samples in pure oxygen and absorbs the analytes in small amounts of liquid

Analytical method for the determination of AOF

What is CIC?

Combination of Ion Chromatography (IC) with an automated sample preparation step (Combustion) Combustion Ion Chromatography (CIC)

Total S, F, Cl, Br in liquid, solid and gas samples Polymers, raw materials, oil, fuel, coal Standard methods: ASTM, JIS, VDI, DIN, ISO

CIC theory

Schematic of a CIC system

PFAS analysis strategy for known and unknowns

Thermo Fisher

SCIENTIFIC

Why AOF?

- Covers fluoroorganic
 compounds not readily
 determined by LC MS/MS
 - Identify additional potential sources contributing to PFAS contamination

- Complement to other approaches
 - Easy-to-use and economically attractive way to generate a cumulative parameter
- Optimize utilization of the more expensive LC-MS/MS and GC-MS/MS instrumentation

Thermo Fisher

 Selecting and only analyzing "suspicious" samples

Total fluorine mass balance

TF = Total Fluorine IF = Inorganic F OF = Organic F AOF = Adsorbable OF EOF = Extractable OF

PFAS: Fluorine measurement methods

Method	Notes	Instrumentation	Advantages	Disadvantages
Total Fluorine (TF)		CIC	All F (PFAS incl.)	Both IF and OFIndiscriminate
Inorganic Fluorine (IF)		IC		
Organic Fluorine (OF)	TF - IF	CIC + IC	Inorganic F excludedPFAS incl.	 Non-PFAS org. compounds incl. 200 ppb LOD
Adsorbable OF (AOF)	Adsorbed onto activated carbon	CIC	 Inorganic F excluded PFAS bound Concentration 10 ppb DL 	Only a portion of OF adsorbed; i.e. not all PFAS captured
Extractable OF (EOF)	Solid phase extraction	SPE + LC-MS/MS (Targeted) or LC-HRAM (non-targeted)	 Inorganic F excluded PFAS bound Concentration ~ 1ppt DL 	Only a portion of OF extracted; i.e. not all PFAS captured

AOF by CIC workflow

AOX Adsorption Unit

Nittoseiko AQF-2100

ermo Scientific™ Dionex™ Integrion™ HPIC system

Thermo Scientific[™] Chromeleon[™] Chromatography Data System

AOF adsorption onto activated carbon

Nittoseiko TXA-04 AOX Adsorption Unit

Combustion and halogen determination

Transfer of carbon to combustion boats.

Ceramic tube to prevent devitrification

 Combustion of samples with high sodium or alkali earth metals levels will rapidly damage the quartz tube

Thermo Fis

- Ceramic inner tube
 - Protects Quartz tube
 - Improved accuracy and recovery

Combustion gas absorption module

Combustion monitor

٠

- Determines sample burn rate by oxygen consumption
- Optimizes boat program

Software based automation to increase productivity

- Established program controls total analysis
 - Capable of starting combustion of next sample to reduce waiting time

Thermo Fisher

CIC system components

- Nittoseiko TXA-04 AOX Adsorption Unit
 - Mitsubishi Chemical Analytech prepacked active carbon columns (ca. 50 mg x 2)

- Nittoseiko AQF-2100H
 - ASC-240S Solid Autosampler or ASC-270LS Liquid/Solid Autosampler
 - HF-210 Horizontal furnace
 - Ceramic insert, ceramic boats
 - GA-211 Gas absorption unit
 - ES-210 External solution selector

CIC system components and reagents

- Dionex Integrion HPIC system
- Dionex IonPacAS20 column set (2 mm; P/N <u>063065</u>, 063066)
- Dionex EGC 500 KOH Potassium Hydroxide Eluent Generator Cartridge (P/N 075778)
- Dionex CR-ATC Continuously Regenerated Anion Trap Column (P/N 060477)
- Dionex ADRS 600 Anion Dynamically Regenerated Suppressor (2 mm; P/N 088667)
- Optional (IC sample preconcentration)
 - Dionex UTAC-XLP1 concentrator column (P/N <u>063459</u>)
 - Dionex IonPac ATC-HC Anion Trap Column (P/N 059604)
 - Dionex AXP auxiliary pump (P/N <u>063973</u>)
- Calibration standard
 - Dionex Fluoride Standard, 1000 mg/L, 100 mL (P/N 037158)
- Reagents
 - Nitric acid (65%, Merck KGaA, Darmstadt, Germany)
 - Sodium nitrate (99.5%, VWR Chemicals, Germany)
 - Ammonium perfluorobutanesulfonate (PFBS) (98%, Sigma-Aldrich Chemie GmbH, Steinheim, Germany)
 - 4-Fluorobenzoic acid (≥98%, Merck KGaA, Darmstadt, Germany)

Thermo

Thermo Scientific CIC strengths

Dionex Integrion HPIC system

Sensitivity – 2 -10 ppb

Column offerings (variable capacities, 4 µm resin,...)

Eluent generation technology

Ease of use with Chromeleon CDS Software

Ceramic inner tube, ceramic boats

Combustion conditions

Furnace Inlet Temp.	900 ° C		
Furnace Outlet Temp.	1,000 ° C		
Argon Flow (Carrier)	200 mL/min		
Oxygen Flow (Combustion Agent)	400 mL/min		
Humidified Argon Flow	100 mL/min		
Pyrolysis Tube	Quartz tube with ceramic insert and quartz wool		
Sample Boat	Ceramic		
Absorption Solution	Water		
Absorption Solution Volume	3.5 mL		
Mass Combusted	Contents of the GAC column (40-50 mg)		

IC Conditions

Thermo Scientific[™] Dionex[™] Integrion[™] HPIC[™] System

IC Conditions				
Columns	Thermo Scientific™ Dionex™ IonPac™ AG18- 4µm column set, 4 mm			
Eluent Source	Thermo Scientific™ Dionex™ EGC 500 KOH Eluent Generator Cartridge			
Eluent Concentration	30 mM KOH			
Flow Rate	1.0 mL/min			
Column Temp.	30 ° C			
Inj. Volume	100 µL			
Detection	Suppressed conductivity			

Determination of AOX in (A) wastewater and (B) spiked wastewater

Thermo CIC system advantages

- KOH eluents with eluent generation and column technology
 - Lower background, minimal or no water dip and F well separated from water.
 - HF-210 Horizontal furnace
 - Combustion of samples with high sodium or alkali earth metals levels will rapidly damage the quartz tube
 - Ceramic insert, ceramic boats
- System is ready to meet upcoming DIN/ISO and U.S. EPA standards using CIC to determine AOF; additionally, an ASTM method is under development

Recoveries of PFAS compounds from various water

Table 4. Recovery data for PFBS and 4-FBA

Surface water		Wastewater			
Sample	PFBS recovery	Sample	PFBS recovery	4-FBA recovery	
1	94	1	102	90	
2	105	2	91	83	
3	99	3	86	82	
4	92	4	89	n.d.	
5	109	5	93	n.d.	
6	98	6	85	83	
7	98	7	94	127	
8	99				

Figure 4. Selection of representative chromatograms obtained after adsorption on activated carbon and combustion. (A) municipal wastewaters, (B) groundwaters, (C) surface waters, (D) industrial wastewater (diluted 1 to 10)

0.1 ug/L F

PFOS standard

Calibration data

ThermoFisher SCIENTIFIC

Flow diagram for Integrion HPIC system using – preconcentration with matrix elimination

Preconcentration

Conclusions

- Combustion ion chromatography can be used for precise and accurate determination of AOX and total fluoride in environmental water samples
- The Dionex Integrion IC system provides a high performance, integrated solution that uses eluent generation to free the analyst from the need to prepare eluent, eliminates the handling of strong base, and removes a possible source of error
- The AOF-CIC-method, as a complement to existing approaches, provides an easy-to-use and economically attractive screening tool to generate a cumulative parameter, and can help to optimize the utilization of the more expensive LC-MS/MS and GC-MS/MS instrumentation by selecting and only analyzing "suspicious" samples

Thermo Scientific Combustion IC System

Thermo Fisher S C I E N T I F I C

30 kirk.chassaniol@thermofisher.com | 19-November-2020