

ThermoFisher SCIENTIFIC

Ultra Sensitive LC-MS Workflow for Single Cell Proteomic Analysis

Khatereh Motamedchaboki, Ph.D. Vertical Marketing, Proteomics November 2019

The world leader in serving science

New Mass Spectrometry Platforms

Thermo Scientific[™] Orbitrap Eclipse[™] Tribrid[™] Mass Spectrometer offers extraordinary sensitivity and versatility

Thermo Scientific[™] Orbitrap Exploris[™] 480 Mass Spectrometer makes the extraordinary simpler

Challenges in Life Science Mass Spectrometry

Orbitrap Eclipse Tribrid MS offers extraordinary sensitivity and versatility

Qualitative Proteomics

Quantitative Proteomics

Structural Biology

Biopharmaceutical Analysis

Small Molecule Characterization

Complex samples, wide dynamic range

Accurate proteomewide quantitation with high throughput

Protein complex structure characterization

Protein-drug structure elucidation, impurity identification

Structural characterization of isomeric species

New Orbitrap Eclipse Tribrid MS System

Acquisition rate OTMS ²	40 Hz
Acquisition rate ITMS ²	45 Hz
Maximum resolution	500K FWHM at <i>m/z</i> 200; up to 1,000,000 with 1M
Quadrupole minimum isolation width	0.4 <i>m/z</i>
Mass range	<i>m/z</i> 50-8000
Mass Accuracy	3 ppm ext, 1 ppm int
Dissociation / Ion Activation	CID, HCD, ETD, EThcD, ETciD, UVPD, PTCR
MS ⁿ	Up to MS¹⁰ with the ion trap or Orbitrap mass analyzer
Analyzers	Q, OTMS, ITMS
Detectors	lon Trap, Orbitrap mass analyzer
Size	1186 x 674 x 650 mm (w, d, h)

Unmatched Analytical Performance and Versatility

- QR5 Segmented Quadrupole Mass Filter for outstanding precursor selectivity and sensitivity
- Real-Time Search for exceptional depth and accuracy for TMT analysis
- High Mass Range MSⁿ (HMRⁿ) option for structural analysis of native protein complexes
- Proton Transfer Charge Reduction (PTCR) option for simplification of complex spectra and improved top-down data interpretation
- Full Customization with a range of optional capabilities:

IC | ETD | UVPD | 1M | HMRⁿ | PTCR | FAIMS Pro interface

• Common interface Orbitrap Exploris 480 MS and TSQ[™] triple quadrupole mass spectrometers

Challenges in Life Science Mass Spectrometry

Orbitrap Exploris 480 MS makes the extraordinary simpler

Qualitative Proteomics

Quantitative Proteomics

Biopharmaceutical Analysis

Complex samples, insufficient depth of analysis

Accurate low limit proteome wide quantitation with high throughput

Protein drug structure elucidation, impurity identification

Orbitrap Exploris 480 Mass Spectrometer

Mass range:	40 - 6000 m/z (8000 m/z optional)
Quad isolation:	down to 0.4 u
Scan rate MS ² :	up to 40 Hz
Max resolution:	480k at m/z 200
Dynamic range:	> 5000:1
Mass Accuracy:	3 ppm RMS ext., 1 ppm RMS int.
Dissociation:	Higher energy Collisional Dissociation (H
Analyzer:	Quadrupole, Orbitrap
Compact:	530 x 760 x 700 mm (w,d,h)
Options:	Easy-IC, BioPharma , FAIMS Pro

CD)

Making Genius Simpler

- **480,000 Resolution** to resolve spectra interference and enable data certainty
- Maximized proteome coverage and quantitation
 with FAIMS Pro interface
- **Novel scan modes** for higher throughput without compromising sensitivity, precision and accuracy
- Robust and reliable design for maximum uptime
- **Application modes** with best-practice default parameters and drag-n-drop methods templates for portability from system to system
- Next generation user interface with Thermo Scientific[™] Orbitrap[™] Tribrid[™] mass spectrometers and TSQ triple quadrupole mass spectrometers

The Promise Behind Single Cell Applications

Reason	Application	Bulk Result	Single cell data
UNDERSTAND CELLULAR	Identification of cell subpopulations based on protein expression or metabolic profiles (tumors, tissues, immune cells, cell cultures)		
HETEROGENEITY			
	Detection and analysis of rare cells (i.e. CTCs from liquid biopsies)		
LIMIT			
AVAILABILITY OF CELLS	Analysis of limited sample material (exosomes, needle aspirates, biopsies)	No Data	

SINGLE CELL ISOLATION WITH FLUORESCENCE-ACTIVATED CELL SORTING

Zhu et al. Angew. Chem. Int. Ed., 2018, 57, 12370-12374.

Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.9b03349 • Publication Date (Web): 11 Sep 2019

ananoPOTS: <u>nano</u>droplet <u>P</u>rocessing in <u>O</u>ne-pot for <u>T</u>race <u>Sample</u>

AUTOMATED SAMPLE PREPARATION IN NANOLITER VOLUMES ON NANOPOTS

5 8 8 8 8 8		TUBE METHOD	NANOWELL METHOD
	Reaction volume	100 µL	200 nL
Contra Co	Surface	127 mm ²	0.8 mm ²
200 nL droplets	Digestion kinetics	Low	High

Benchmark Results Cell Size and Sample Storage Effect

- ✓ Identification of similar number of proteins from uniform cell types
- ✓ 2X more proteins and peptides than previously reported
- ✓ ~ 450 protein groups identified with label free method on Orbitrap Tribrid Eclipse MS from single HeLa cell
- ✓ Fresh sample stored at 4°C provided the best data
- $\checkmark\,$ Cell size matters when it comes to protein IDs

Improved Ion Mobility-Based Separation Option for Proteomics

Sibylle Pfammatter et al. Molecular & Cellular Proteomics July 14, 2018

Thermo Scientific™ FAIMS Pro™ Interface

- Compatible with nano- and low-flow chromatography (<25µL/min)
- Operation on TSQ triple quadrupole mass spectrometers, Orbitrap Tribrid mass spectrometers and Orbitrap Exploris 480 MS
- Automatic source recognition and programming in Tune
- Method templates for key applications
- Performance improvements for most protein analysis applications

Orbitrap Eclipse MS – Performance at 200 ng +/- FAIMS

Proteome Coverage: 200 ng HeLa, 120 min Gradient

- ✓ ~6200 proteins identified in 120 min with 200 ng of HeLa digest without FAIMS Pro Interface (mean of n=3 injections shown)
- ✓ ~7800 proteins identified in 120 min with 200 ng of HeLa digest with FAIMS Pro Interface (mean of n=3 injections shown)
- Improved peptide/protein coverage with FAIMS Pro Interface
- Further improvement in peptide/protein ID with search on combined replicate analysis

Improving Single Cell Protein Coverage with FAIMS Pro Interface

Method Optimization at Single Cell Level with FAIMS Pro Interface

HeLa QC Results

Method Optimization at 0.5 ng of Thermo Scientific[™] Pierce[™] HeLa Protein Digest Standard Data showed improved peptide/protein coverage with Ion Trap sensitivity HCD fragmentation in Ion Trap provided further comprehensive fragmentation enhancing peptide identification rate The highest number of protein coverage reported from 0.5 ng sample injection providing unmatched sensitivity to analyze proteins in single cell level On average 893 protein groups from single HeLa cell and 1134 protein groups from laser capture microdissected single neuron cell were identified (Manuscript in Preparation)

FAIMS Pro Enhances Proteome Coverage in Single Cells

 ✓ 829 protein groups found in one single cell using MS/MS identification with Thermo Scientific[™] Proteome Discoverer[™] 2.4 software (1072 protein groups using MaxQuant with MBR)

Orbitrap Exploris 480 MS - ID Performance Above and Below 200 ng

Proteome Coverage 10 ng – 1000 ng HeLa

- ✓ ~2900-6800 proteins identified in 90 min with 10 ng 500 ng of HeLa digest
- ✓ ~2900-7500 proteins identified in 120 min with 10 ng 1000 ng of HeLa digest
- ✓ FAIMS with intra-analysis CV stepping (CV -50 and -70), identical conditions to slide 13

Orbitrap Exploris 480 MS - ID Performance Above and Below 200 ng

Proteome Coverage 10 ng – 500 ng HeLa: 30 and 60 min Analysis

- ✓ ~2000-4000 proteins identified in 30 min with 10 ng 500 ng of HeLa digest (mean of n=3 injections shown)
- ✓ ~3000-6000 proteins identified in 60 min with 10 ng 500 ng of HeLa digest (mean of n=3 injections shown)
- ✓ Identical experimental conditions to slide 23 except with FAIMS 1 CV (-60) single sample injection

Record Setting Performance at 10 and 200 ng HeLa with FAIMS Pro Interface

Optimized for Maximum Coverage and Reproducibility

- ~6,700 proteins Identified in 2 hours with 200 ng of HeLa
- MS/MS and Protein Identification Reproductivity with <1% CV
- Peptide and PSMs Reproducibility with <2% CV
- FAIMS Pro Interface (intraanalysis CV stepping, CV -50 and -70)
- 1% FDR at Peptide Level
- Sharing experimental method and raw reference files

- ~480 protein groups identified with MSMS in 140 min from 0.2 ng of HeLa digest
- ✓ ~1600 proteins identified with 2 ng HeLa digest is used as QC for evaluation of LC-MS performance
- ✓ Smaller ID column (30umx30cm,1.7um-CoAnn Tech) at lower nano flow rate (50 nl/min-Thermo Scientific[™] UltiMate[™] 3000 RSLCnano system) provides high performance with high sensitivity

Orbitrap Exploris 480 MS – Protein ID Performance at Single Cell Level

1, 5 and 55 HeLa Cells and 0.5 - 2 ng HeLa Digest with FAIMS Pro Interface

Optimized for Maximum Coverage and Reproducibility

- ~750 proteins Identified in Single HeLa Cell and ~2000 Protein Groups from 5 HeLa Cells
- Unmatched sensitivity at low nanogram sample injection (0.5-2ng and low number of HeLa Cells, 1, 5 and 55 Cells)
- FAIMS Pro Interface (intraanalysis CV stepping, CV -60 and -75) were used for on the fly peptide fractionation
- CV -60 removing +1 charge background from PEGs
- Identification at MS² level with 1% FDR

Record Setting Performance: 0.5 ng HeLa Digest and Single Cell

Orbitrap Exploris 480 MS – Performance at Single Cell Level -/+ FAIMS Pro Interface

Optimized Orbitrap Method for Max Coverage and Reproducibility

- ~750 proteins Identified in Single HeLa Cell
- Unmatched sensitivity at low nanogram sample injection (0.5-2ng)
- FAIMS Pro Interface (intra-analysis CV stepping, CV -60 and -75)
- CV -60 removing +1 charge background from PEGs
- Identification at MS² level with 1% FDR

Real-Time Search for exceptional depth, throughput and accuracy of TMT analysis

Isobaric Labeling: Challenges and Resolutions

<u>Why do scientists love Thermo</u> <u>Scientific™ Tandem Mass Tags™</u> (TMT™)?

- Increase in throughput (up to 11X)
- Relative quantitation in the same scan, no need to match chromatography
- Can be applied to any peptide mixture

What are the drawbacks?

- Original <u>MS²</u> based method is <u>NOT</u> <u>accurate</u> because of the ratio compression caused by spectral interference
- Recently introduced <u>SPS MS³</u> method is more <u>accurate</u>, but it is <u>30-50% slower</u>

Detecting Small Changes At Low Levels: a Synergy of Single Cell Analysis And Real-Time Search

 TMT labeling allows boosting the MS² signal and increases sensitivity to make single cell proteome characterization feasible (Budnik et. Al., 2018 Genome Biol. 19, p.161)

• TMT SPS MS³ with Real-Time Search provides necessary accuracy and throughput for quantitative analysis of differences between the individual cells

proteome • research

Main claims:

- Real-Time Search allows for significantly improved coverage AND throughput
- Real-Time Search allows for further improved accuracy over SPS MS³ method

Active Instrument Engagement Combined with a Real-Time Database Search for Improved Performance of Sample Multiplexing Workflows

Brian K. Erickson[†] (b), Julian Mintseris[†], Devin K. Schweppe[†] (b), José Navarrete-Perea[†] (b), Alison R. Erickson[†] (b), David P. Nusinow[†], Joao A. Paulo[†], and Steven P. Gygi^{*†} [†] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States

J. Proteome Res., 2019, 18 (3), pp 1299-1306

Real-Time Search Is An Easy-To-Use Method

Method Editor	Global Parameters	Scan Parameters	Summary			
	Method Timeline			Experiment ACT	ons 🗸	Settings 🛛 🖓
Application Mode #	20	40 60 TMT SPS-MS3 with Real-	80 Time Search	100	120	Infusion Mode
Peptide 🔻						Expected LC Peak Width (s) 30
Method Duration (min)					Q	Advanced Peak
120					Đ	Default Charge State 2
	Experiment # 1	Time Range (min) 0-	120		CLEAR 前	ę,
Save as Template		Ms	от			Real Time Search Properties
System Templates		Prec			ſ	FASTA Database test.fasta
BoxCar		Selectio	on Range			Import Export Clear
		м	IPS			Forme Tomin *
Crosslinking		Inte	ensity		9	пурыт
DIA						
ID +		Charg	e State			Modification Name 🛆 Mass Sites
		Dyn Excl	amic usion			1 Carbamidomethyl 57.0215 C
Peptide Mapping						2 IMI6plex 229.1629 Kn
PTMs 🕨		2.5 ddMS				
QuanDiract		Real Tin	ne Search		3	
Quantinett		Prec	ursor			
SILAC >		Selectio	on Range			Modification Name △ Mass Sites
Single Cell		Precu Excl	usion			
		Isobaric Excl	Tag Loss usion			
SureQuant		_	5			
			IO PS			Maximum Missed Cleavages
		ddMS ³	OT HCD	QC	20	Maximum Variable Mods / 2
Custom Templates		_				

- One-click set up
- Any Database
- Any modification (3 max)
- Comet Search Engine* (similar to SEQUEST)
- Adjustable pass/fail criteria

*Eng et al. Proteomics. 2013 13(1): 22-4

Real-Time Search Improves Quantitative Accuracy of SPS MS³ Experiment

Using the right fragments for MS³ with Real-Time Search: a real data example

- We are comparing the MS² spectra for the BSA peptide shown
- Standard SPS MS³ 9 ions selected
 - 5 correct TMT-tagged fragments
 - 4 untagged or contaminant fragments
- Real-Time Search SPS MS³
 - 5 correct TMT-tagged fragments (b-ions)
 - System excluded un-tagged and unidentified fragments
- This results in greater specificity of TMT reporter ions, leading to improved quantitation accuracy

Unique Real-Time Search for TMT SPS MS³ with Orbitrap Eclipse Tribrid MS

Highest Quantitative Accuracy Is Driven by Intelligent Acquisition

Real-Time Search Increases SPS MS³ Throughput

Real-Time Search: results of SPS MS³ in half the time

 Real-Time Search doubles the throughput of SPS MS³ workflow

 Results shown here are for HHM sample: three human cell lines labeled as biological replicates in TMT10plex (3-3-4)

Data: D. Schweppe, Q. Yu and S. Gygi Harvard Medical School

Single Cell Analysis Using NanoPOTS* and TMT

Benefits of using TMT for Single Cell Analysis

- Up to 9 single cell analyzed in a single LC/MS run with TMT11plex
 Up to 14 single cell analyzed in a single LC/MS run with Thermo Scientific[™] TMTpro 16plex Isobaric Label Reagent
 Extra TMT channels are used as:
 - <u>a booster channel</u> to amplify the MS² signal
 - empty channel(s) to measure noise

Single Cell Analysis With TMT Multiplexing

How does the signal look?

8 single cells from 3 cultured murine cell populations were analyzed in a single LC/MS run, ~0.2 ng of protein/cell

1 Pooled sample in the boost channel (5 ng or ~20 cells)

1 empty control (130N)

The shown results are for 24 single cells analyzed in 3 LC-MS runs

Single Cell Classification With MS² And Real-Time Search SPS MS³ Methods

<u>Results</u>

- Both methods differentiated 3 cell types
- SPS MS³ with Real-Time Search provided improved accuracy with better separation between cell types without compromising protein coverage

Is There a Difference in Protein Expression on a Single Cell Level?

- Two cell types were compared (C10 and Raw)
- SPS MS³ with Real-Time Search identified a greater number of significantly changing proteins

	MS ²	MS ³	Difference, %
Total Proteins	901	960	7
Up in Raw	157	195	24
Up in C10	62	133	1.5X

External Validation

- Quantifying Pyruvate Kinase PKM in 3 different cell type
- Minimal interference in empty channel

An Example Of TMT-based Quantitation Of Cell Differentiation Markers

TMTpro 16plex Label Reagents: A New Horizon For Single Cell Proteomics

TMTpro Reporter Ion Spectra 5ng HeLa QC 16 Channel (1:1 Ratio)

TMTpro Reporter Ion Spectra In Single Cell Analysis

133 15

133.0

133.5

134.15

134.0

134,52

132.15

132.14

132.0

132.5

131.14

131.0

131.5

130.5

131.14

Hight-throughput Single Cell Proteomics Analysis with TMTpro

Glyceraldehyde-3-phosphate dehydrogenase (G3PD) Quan Channels

Quan Channels

Classification of 3 different cell type by TMTpro without boost

Clear differentiation between three cell types without Boost Channel

Label Free Workflow

TMT Workflow

	Initial Study	After optimization		Initial Study	After optimization
Sample preparation	NanoPOTS	NanoPOTS	Sample preparation	NanoPOTS	NanoPOTS
Separation	30 µm i.d. column	20 µm i.d. column	Separation	30 µm i.d. column	30 µm i.d. column
Mass Spectrometer	Lumos	Eclipse+FAIMS Pro	Mass Spectrometer	Lumos	Eclipse+ Real Time Search
Data analysis	MaxQuant	Proteome Discover	Data analysis	Proteome Discover	Proteome Discover
Protein group IDs by MS/MS	211	829	Protein group IDs by MS/MS	1676	2346

As today, our LC-MS systems can provide the amount of information required in the single cell analysis field

Orbitrap Eclipse Tribrid MS With Real-Time Search To Revolutionize Single Cell Quantitation

"A revolution in single cell proteomics is just beginning. The combination of nanoPOTS with the Orbitrap Eclipse Tribrid, TMT reagents and SPS MS³ with Real Time Search provide the depth of coverage, quantitative accuracy and throughput needed to propel this nascent field forward. "

Dr. Ryan Kelly Department of Chemistry and Biochemistry Brigham Young University, Provo, UT, USA Pacific Northwest National Laboratory, Richland, WA, USA

Proteomics Team

- Khatereh Motamed
- Aaron M Robitaille
- Xuefei Sun
- Greg Foster
- Aaron Gajadhar
- Daniel Lopez Ferrer
- Andreas Huhmer

Product Management Team

- Romain Huguet
- David Horn

PNNL/BYU

- Ryan Kelly
- Yongzheng Cong
- Ying Zhu
- Maowei Dou
- Yiran Liang

CoAnn Technologies

• Yufeng Shen

Demo Lab Orbitrap Exploris 480 MS Success: New Jersey Demo Lab - Not the Max ID Method

200 ng HeLa, 120 min Analysis -/+ FAIMS Pro Interface

-FAIMS	Mean (n=3)	CV (%)
Protein Groups	5682	0.23
Peptide Groups	54710	0.15
PSMs	140424	0.40
MS/MS	159567	0.07

+FAIMS	Mean (n=3)	CV (%)
Protein Groups	6474	0.31
Peptide Groups	73312	1.11
PSMs	148164	0.81
MS/MS	165349	0.11

- ✓ ~5700 proteins identified in 120 min with 200 ng of HeLa digest without FAIMS Pro Interface (mean of n=3 injections shown)
- ✓ ~6500 proteins identified in 120 min with 200 ng of HeLa digest with FAIMS Pro Interface (mean of n=3 injections shown)
- Improved peptide/protein coverage with FAIMS Pro Interface

Josh's Dat

From Cells to Peptides

Step 1

Sample Prep on nanoPOTS Chip

- 1. Single Cell Lysis and Digestion
- 2. Loading Peptides to Capillary
- 3. Secure ends with parafilm
- 4. Store and Transfer at 4° C

Thermo Fisher

Peptides Loaded Capillary

Transfer Peptide Digest into an SPE Column

Loading Peptides Into the SPE Column

UltiMate[™] 3000 RSLCnano system

Step 2

LCMS Analysis

Step 3

Connect SPE/Trap online and run 160 min LC gradient

Thermo Fisher