Thermo Fisher

Advances in the design of anion exchange stationary phases for Ion Chromatography with various bonding chemistries

Alexandra Zatirakha, Christopher Pohl

The world leader in serving science

alexandra.zatirakha@thermofisher.com | September 2022

Content

- Introduction
- Electrostatically bonded hyperbranched anion exchangers
- Covalently bonded hyperbranched anion exchangers
 - Preparation of basement coatings
 - Effect of reaction cycles number
 - Effect of bonding chemistry on selectivity of hyperbranched phases
 - Effect of amine in hyperbranched layer
 - Effect of grafted monomer
- Conclusions

Hyperbranched anion exchangers

- Electrostatically bonded anion exchange materials
- Covered by original patent US 7,291,395
- Represent major portion of ICSP column revenues (at least 15 products)
- Simplified manufacturing process (automated in-column synthesis)
- High performance due to high surface hydrophilicity which minimizes hydrophobic interactions with analytes
- Many possibilities for selectivity variations

(12)	Unite	d States Patent al.	(10) Patent No.: US 7,291,395 B2 (45) Date of Patent: Nov. 6, 2007		
(54)	COATED AND ME	ION EXCHANGED SUBSTRATE THOD OF FORMING	5,532,279 A 5,865,994 A 6,074,541 A	7/1996 E 2/1999 R 6/2000 S	Barretto et al. Riviello et al. Brinivasan et al.
(75)	Inventors:	Christopher A. Pohl, Union City, CA (US); Charanjit Saini, Milpitas, CA (US)	6,867,295 B2* Oth	3/2005 V HER PUBI	Voodruff et al 536/103 LICATIONS
(73)	Assignee:	Dionex Corporation, Sunnyvale, CA (US)	Alpert, A., et al., "Preparation of a porous microparticulate anio exchange chromatography support for proteins," J. Chromatog 185:375-392 (1979).		a porous microparticulate anion- t for proteins," J. Chromatogr.
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 536 days.	Kopaciewicz, W., et al. in high-performance ligand density and mix 172 (1985).	, "Stationary anon-excha and mode ef	y phase contributions to retention ange protein chromatography: fects," <i>J. Chromatogr.</i> 318:157-
(21)	Appl. No.	: 10/782,366	* cited by examiner		
(22)	Filed:	Feb. 18, 2004	Primary Examiner—H. T Le (74) Attorney, Agent, or Firm—David J. Brezner; Morgan		
(65)		Prior Publication Data	Lewis & Bockius L	LP	
	US 2005/0	0181224 A1 Aug. 18, 2005	(57)	ABSTR	RACT
(51)	Int. Cl. <i>B32B 5/16</i> (2006.01) <i>B05D 7/00</i> (2006.01)		A method for making an ion exchange coating (e.g., chromatographic medium) on a substrate comprising (a reacting at least a first amine compound comprising amin		
(52)	U.S. Cl. 428/407; 427/221; 427/222 Field of Classification Search 428/403, 428/403, 428/407; 427/212, 221, 222		groups, with at least a first polyfunctional compound, in the presence of a substrate to form a first condensation polymer reaction product, with a first unreacted excess of either at		
(00)					
	See applic	ation file for complete search history.	functional mojeties.	o group o irreversib	or polyfunctional compound ly attached to the substrate.
(56)		References Cited	and (b) reacting at least a second amine compound or at least		

New selectivity \rightarrow covalent attachment of hyperbranched layer \rightarrow functionalized resin surface is required

Formation of electrostatically bonded basement coating

ThermoF

Hypothetical product of 1:1 ratio (diepoxide:amine)

Basement coating [1:1 ratio (diepoxide:amine)]

Layer 1 after diepoxide treatment

Layer 1 after diepoxide and amine treatment

Thermo Fisher

Layer 2 after diepoxide treatment

Thermo Fisher

Sulfonated Resin Surface

Thermo Fisher

Layer 2 after diepoxide and amine treatment

In-column preparation of step-growth electrostatic graft

Column:	Prototype prepared using MA and 1.4-BDDGE
Eluent:	5 mM KOH
Flow Rate:	1 mL/min
Inj. Volume:	25 µL
Peaks:	1. Fluoride 1 ppm

1.	Fluoride	1	ppm
2.	Acetate	10	
3.	Formate	5	
4.	Chlorite	5	
5.	Bromate	10	
6.	Chloride	3	
7.	Nitrite	5	
8.	Chlorate	10	
9.	Bromide	10	
10.	Nitrate	10	

Covalently bonded anion exchangers

Major requirements:

- Functionalization should be limited to the resin surface
- Functionalization method should provide good surface hydrophilization

Solutions for covalent attachment proposed in literature:

- Chemical derivatization of substrate difficult to accomplish surface modification \rightarrow poor stationary phase performance
- Incorporation of a reactive monomer as a comonomer in resin synthesis uneven distribution of functional groups inside the particle → poor efficiency of the stationary phase.

Alternative solutions:

- To use reagents (monomers) that are not soluble in the resin
- To use the solvent that doesn't cause resin swelling (highly polar solvents for PS-DVB functionalization)

Formation of covalently bonded basement coating

Highly Polar Monomer

Polar Solvent

Initiator

CH₃OH

AIBN or ACVA

N-Vinylformamide polymerization and hydrolysis

Effect of reaction cycles number on separation

Parameter	Analyte		
N of cycles	2-6		
Diepoxide	1,4-BDDGE		
Amine	MA		
Columns	250 mm x 4 mm i.d.		
Flow	1.0 mL/min		

Thermo Fisher

Peak	Analyte
1	F ¹
2	CIO ₂ -
3	BrO ₃ -
4	Cl
5	NO ₂ -
6	Br
7	CIO ₃ -
8	NO ₃ -

Effect of reaction cycles number on selectivity

N of cycles	a(ClO ₃ /Br)	a(NO ₃ /CIO ₃)	a(NO ₃ /Br)	t _r (NO ₃)-t _r (CIO ₃)/ t _r (CIO ₃)-t _r (Br)
2	1.19	1.13	1.34	0.82
3	1.23	1.17	1.43	0.89
4	1.26	1.19	1.50	0.93
5	1.30	1.21	1.57	0.89
6	1.33	1.20	1.61	0.81

Effect of bonding chemistry on selectivity

Reaction cycles: 1,4-BDDGE + methylamine

Electrostatically Bonded

7.0 a (Anion/Cl) 5.0 a (Anion/CI) NO₃⁻ y = 0.8251x + 1.12596.0 NO₃ y = 0.6723x + 0.6964R² = 0.9978 $R^2 = 0.9945$ 4.0 y = 0.6447x + 1.1542 $CIO_3^{-y} = 0.0574x^2 + 0.1518x + 1.0175$ 5.0 R² = 0.9981 R² = 0.9996 3.0 4.0 Br⁻ y = 0.3661x + 0.9787Br y = 0.4272x + 1.2247R² = 0.9987 R² = 0.9949 3.0 2.0 $NO_2^$ y = 0.1634x + 0.9911R² = 0.9997 y = 0.1572x + 1.1879NO₂-2.0 $R^2 = 0.9858$ 1.0 1.0 0.0 0.0 7 2 0 1 3 4 5 6 8 1 2 3 5 6 7 Number of reaction cycles Number of reaction cycles

Covalently Bonded

Effect of amine in reaction cycle

Parameter	Value		
N of cycles	3		
Diepoxide	1,4-BDDGE		
Amine	MA		
Columns	250 mm x 4 mm i.d.		
Eluent	5 mM KOH		
Flow	1.0 mL/min		

Effect of amine in reaction cycle on selectivity

	a(ClO ₃ /Br)		a(NO ₃ /CIO ₃)		a(NO ₃ /Br)	
N cycles/Amine	MA	DAP	MA	DAP	MA	DAP
3 cycles	1.20	1.24	1.18	1.27	1.42	1.57
4 cycles	1.26	1.26	1.19	1.28	1.50	1.62
5 cycles	1.30	1.30	1.21	1.29	1.57	1.67

Thermo Fisher

SCIEN

Effect of monomer used for grafting

Monomers in the base layer

Monomer in the base layer	*Capacity after base layer (μEq)
N-vinylformamide	91.2
N-methyl-N-vinylacetamide	1.7
N-[(4-vinylphenyl)methyl]acetamide	22.9

*Per 250 mm × 4 mm i.d. column

Effect of monomer used for grafting

Thermo Fisher

Conclusions

- The proposed grafting approach allows one to limit the modification of the resin to the surface thus preparing covalently bonded hyperbranched phases with high chromatographic performance
- Proposed method of functional layer attachment allows for the preparation of hyperbranched anion exchangers with new selectivities and controlled crosslinks throughout the layer
- Elution order for anions on the covalently bonded hyperbranched anion exchangers is not dependent on the number of the reaction cycles and amine structure used for hyperbranching
- The most effective way to influence selectivity of covalently bonded phases is by changing the structure of grafted monomer and grafting conditions

Acknowledgement

Christopher Pohl, Consultant, Sunnyvale, CA Anna Blank, Staff Scientist, R&D, Sunnyvale, CA Jinhua Chen, Staff Scientist, R&D, Sunnyvale, CA

