

Poster Reprint

ASMS 2023 Poster number WP 564

Targeted Lipidomic Analysis of Pediatric Leukemia Cells Using LC-MS/MS Triple Quadrupole

Lihua Jiang¹, Ruiqi Jian¹, Hui Zhao², Yanan Yang², Mark Sartain², Maya Kasowski³, Mike Snyder¹

¹Department of Genetics, Stanford University, Stanford, CA USA

²Agilent Technologies, Inc. Santa Clara, CA USA

³School of Medicine, Pathology, Stanford University, Stanford, CA USA

Introduction

Various research has shown that lipids play important roles during cancer development, progression, and treatment. Leukemia is the most frequent childhood cancer. A challenge in treating leukemia is eradicating leukemia stem cells (LSCs), which are inherently resistant to chemotherapeutics. Although there is great interest in designing therapeutics to target LSCs, clinical translation has been hampered by limited characterization of the biological properties of these heterogeneous cells. While intensive research efforts have been devoted to characterizing the genetics of these tumors, the comprehensive study of lipids has been relatively unexplored. In this study, an easy and fast lipidomics sample preparation method and a rapid (16-min run), sensitive LC-QQQ based targeted lipidomics workflow was developed to quantitatively study the alternation of lipid profiles in bone marrow leukemia cells acquired at initial diagnosis and at relapse diagnosis and at relapse. The targeted lipidomic approach was applied for identification and quantification of over 1200 lipids from about 50 classes in progenitor cells from leukemia bone marrow acquired at diagnosis. A representative subject cell sample was spiked with the internal standard mix containing 97 isotope labelled compounds at different levels with at least 3 replicates. The method was validated in terms of identification, accuracy, precision, matrix effect and linearity of calibration curves. The quantitation was performed using extracted matrix calibration curve. This validated method allowed the detailed lipid profiling by LC-QQQ to identify predictive lipid biomarkers for pediatric leukemia development and progress.

Experimental

Chromatographic Conditions-Agilent 1290 Infinity II Bio LC

- ✓ Agilent targeted lipidomics chromatographic method as described previously¹
- 16-minute RP method designed for \checkmark comprehensive coverage of major lipid classes
- Combination of Agilent Deactivator Additive and \checkmark the Agilent Bio LC improves peak shape and detection for metal-sensitive lipids

¹Huynh, K, et al. A Comprehensive, Curated, High-Throughput Method for the Detailed Analysis of the Plasma Lipidome. Agilent Application Note 5994-3747EN, 2021

MS Conditions-Agilent 6495 Triple-Quadrupole

Parameters	
MS acquisition	Dynamic MRM
lon source	Agilent Jet Stream electrospray ionization (AJS ESI positive/negative)
Drying gas temperature	150 °C
Drying gas flow	17 L/min
Nebulizer	20 psi
Sheath gas heater	200 °C
Sheath gas flow	10 L/min
Capillary	3500 V ESI+ / 3000 V ESI-
Nozzle voltage	1000 V ESI+ / 1500 V ESI-
High pressure RF voltage	150 V ESI+ / 200 V ESI-
Low pressure RF voltage	60 V ESI+ / 110 V ESI-

Sample Preparation

- Prepare 1M subject cell pellet
- Add 75% ice cold methanol spiked with IS

Agilent 1290 Infinity II LC with 6495 Triple Quadrupole LC/MS System.

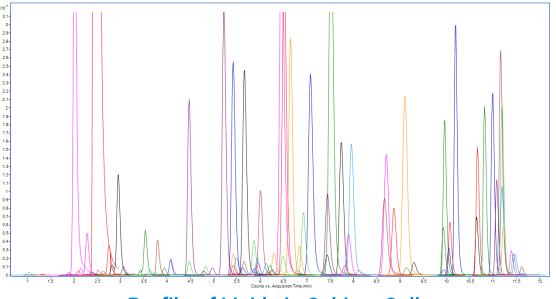
Vortex, sonicate

- ✓ Homogenize with ceramic beads
- Extract with 3 volumes of 1:1:1 acetonitrile : isopropanol : acetone
- ✓ Vortex, centrifuge and collect the supernatant

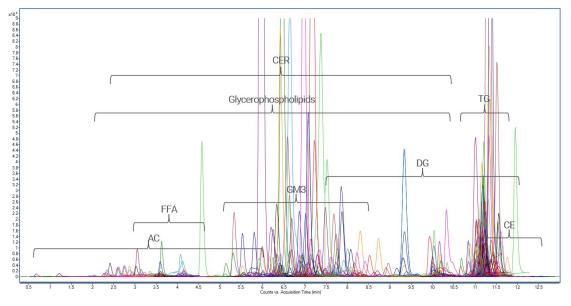
2

Experimental

Lipid Classes (52 Sub-Classes)


	· ·				
Lipid Class	Lipid Subclass	Full Name			
AC	AC	Acylcarnitine			
AC	AC-OH	Hydroxylated acylcarnitine			
BA	BA	Bile acid			
CE	CE	Cholesteryl ester			
CE	dimethyl-CE	Dimethyl-cholesteryl ester			
CE	methyl-CE	Methyl-cholesteryl ester			
Cer	Cer(d)	Ceramide			
Cer	Cer(m)	Deoxyceramide			
Cer	Cer1P	Ceramide-1-phosphate			
Cer	dhCer	Dihydroceramide			
Cer	dhCer1P	Dihydroceramide-1-phosphate			
Cer	dhHex2Cer	Dihydrodihexosylceramide			
Cer	dhHexCer	Dihydromonohexosylceramide			
Cer	dhS1P and dhSph	Dihydrosphingosine-1-phosphate			
Cer	Hex2Cer	Dihexosylceramide			
Cer	Hex3Cer	Trihexosylcermide			
Cer	HexCer	Monohexosylceramide			
Cer	S1P	Sphingosine-1-phosphate			
Cer	SHexCer	Sulfatide			
Cer	SM	Sphingomyelin			
Cer	Sph	Sphingosine			
CL	CL	Cardiolipin			
СОН	СОН	Free Cholesterol			
DE	DE	Dehydrocholesterol ester			
DE	methyl-DE	Methyl-dehydrocholesteryl ester			
DG	DG	Diacylglycerol			
FFA	FFA	Free fatty acid			
Glycerophospholipids	LPC	Lysophosphatidylcholine			
Glycerophospholipids	LPC(0)	Lysoalkylphosphatidylcholine (lysoplatelet activating factor)			
Glycerophospholipids	LPC(P)	Lysoalkenylphosphatidylcholine (plasmalogen)			
Glycerophospholipids	LPE	Lysophosphatidylethanolamine			
Glycerophospholipids	LPE(P)	Lysoalkenylphosphatidylethanolamine (plasmalogen)			
Glycerophospholipids	LPG	Lysophosphatidylglycerol			
Glycerophospholipids	LPI	Lysophosphatidylinositol			
Glycerophospholipids	LPS	Lysophosphatidylserine			
Glycerophospholipids	PA	Phosphatidic acid			
Glycerophospholipids	PC	Phosphatidylcholine			
Glycerophospholipids	PC(0)	Alkylphosphatidylcholine			
Glycerophospholipids	PC(P)	Alkenylphosphatidylcholine (plasmalogen)			
Glycerophospholipids	PE	Phosphatidylethanolamine			
Glycerophospholipids	PE(0)	Alkylphosphatidylethanolamine			
Glycerophospholipids	PE(P)	Alkenylphosphatidylethanolamine (plasmalogen)			
Glycerophospholipids	PG	Phosphatidylglycerol			
Glycerophospholipids	PI	Phosphatidylinositol			
Glycerophospholipids	PIP1	Phosphatidylinositol monophosphate			
Glycerophospholipids	PS	Phosphatidylserine			
GM3	GM3	GM3 ganglioside			
MAG	MAG	Monoacylglycerols			
OxSpecies	OxSpecies	Oxidised lipids			
TG	TG [NL]	Triacylglycerol			
TG	TG(0) [NL]	Alkyldiacylglycerol			
Ubiquinone	Ubiquinone	Ubiquinone			

Results and Discussion


Method Validation Procedure

- 97 internal standards that represent majority of the included lipid classes were selected to evaluate the method performance
- Three sets of standards (extracted matrix-matched standards, post-extraction matrix-matched standards and standards in solvent) were prepared at 0.01, 0.02, 0.05, 0.1, and 0.5 µg/mL with 3 or 4 replicates to test the linearity, limit of quantitation (LOQ), accuracy, reproducibility, and matrix effect (ME)

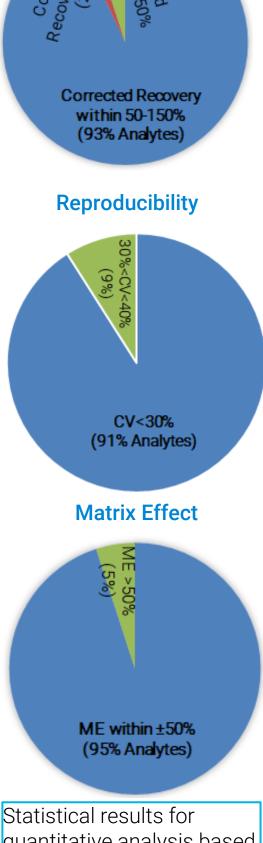
Profile of Internal Standards Spiked in Subject Cell

Profile of Lipids in Subject Cells

Method Validation Results

✓ Extracted matrix-matched standards provide accurate results by compensating for both matrix effects and potential recovery losses
✓ Over 90% of analyte corrected recoveries (CR, within the 50-150% range), CVs (≤30%) and matrix effect (±50%) were obtained at and above the LOQs
✓ The coefficient of determination (r²) values of matrix extracted calibration curves were >0.95 for the majority of analytes ranging from 0.01 (or 0.02) to 0.5 µg/mL

Subject Cell Collection


- Cells were collected from pediatric subjects in accordance with an approved Stanford Review Board protocol
- ✓ The control samples are progenitor cells from healthy young adult bone marrow
- Leukemia bone marrow cells were acquired at diagnosis and at relapse

Results and Discussion

Internal Standard Specific Conditions and LOQ in Cell

Corrected Accuracy

Internal Standard	Transition <i>m/z</i>	RT min	LOQ in Cell µg/mL	Internal Standard	Transition m/z	RT min	LOQ in Cell µg/mL
AC(16:0)-d3	403.4 > 85.1	2.45	0.01	PC (17:0_18:1)-d5	779.6 > 184.1	7.51	0.01
CE(14:1)-d7	619.6 > 376.5	11.12	0.02	PC (17:0_20:3)-d5	803.6 > 184.1	7.08	0.01
CE (16:1)-d7	647.6 > 376.5	11.36	0.02	PC (17:0_22:4)-d5	829.6 > 184.1	7.42	0.01
CE (18:0)-d6	676.7 > 376.5	11.60	0.02	PC (P-18:0_18:1)-d9	781.6 > 184.1	8.66	0.01
CE (18:1)-d7	675.7 > 376.5	11.61	0.01	PE (15:0_18:1)-d7	711.6 > 570.5	6.81	0.01
CE (20:3)-d7	699.6 > 376.5	11.42	0.01	PE (17:0_14:1)-d5	681.5 > 540.5	5.92	0.01
CE (22:4)-d7	725.7 > 376.5	11.46	0.01	PE (17:0_16:1)-d5	709.5 > 568.5	6.83	0.01
Cer (d18:1_16:1)-d7	543.5 > 271.4	6.63	0.01	PE (17:0_18:1)-d5	737.5 > 596.5	7.88	0.01
Cer (d18:1_18:0)-d7	573.6 > 271.4	8.69	0.01	PE (17:0_20:3)-d5	761.5 > 620.5	7.43	0.01
Cer (d18:1_18:1)-d7	571.5 > 271.4	7.73	0.01	PE (17:0_22:4)-d5	787.6 > 646.6	7.80	0.01
Cer (d18:1_20:1)-d7	599.6 > 271.4	8.85	0.01	PE (P-18:0_18:1)-d9	739.5 > 348.3	9.13	0.01
Cer (d18:1_22:1)-d7	627.7 > 271.4	9.95	0.01	PG (15:0_18:1)-d7	759.6 > 570.6	5.59	0.01
Cer (d18:1_24:1)-d7	655.6 > 271.4	10.18	0.01	PG (17:0_14:1)-d5	729.5 > 540.5	4.96	0.01
Cer1P (d18:1/12:0)	562.4 > 264.3	4.06	0.01	PG (17:0_14:1) d3 PG (17:0_16:1)-d5	757.5 > 568.5		0.01
Cholesterol-d7	411.5 > 411.5	4.46	0.01	PG (17:0_18:1)-d5	785.5 > 596.5	6.47	0.01
Cholic Acid-d4	430.3 > 359.3	1.03	0.01	PG (17:0_20:3)-d5	809.5 > 620.5	6.11	0.01
DG (15:0_18:1)-d7	605.5 > 299.5	9.23	0.01	PG (17:0_22:4)-d5	835.5 > 646.5	6.40	0.01
DG (17:0_14:1)-d5	575.6 > 332.3	8.11	0.01	PI (15:0_18:1)-d7	847.6 > 570.6	5.38	0.01
DG (17:0_16:1)-d5	603.6 > 332.3	9.29	0.01	PI (17:0_14:1)-d5	817.6 > 540.6	4.76	0.01
DG (17:0_18:1)-d5	631.6 > 332.3	10.06	0.01	PI (17:0_16:1)-d5	845.6 > 568.6	5.40	0.01
DG (17:0_20:3)-d5	655.6 > 332.3	9.92	0.01	PI (17:0_18:1)-d5	873.5 > 596.5	6.20	0.01
DG (17:0_22:4)-d5	681.6 > 332.3	10.04	0.01	PI (17:0_20:3)-d5	897.5 > 620.5		0.01
dhCer (d18:0_8:0)	428.4 > 266.4	4.47	0.01	PI (17:0_22:4)-d5	923.6 > 646.6	6.15	0.01
FFA (18:1)-d9	290.3 > 290.2	3.79	0.01	PS (15:0_18:1)-d7	755.5 > 570.5		0.01
GlcCer (d18:1_15:0)-d7	693.6 > 271.3	5.84	0.01	PS (17:0_14:1)-d5	725.5 > 540.5	4.82	0.01
Hex3Cer (d18:1_17:0)	1038.7 > 264.3		0.01	PS (17:0_16:1)-d5	753.5 > 568.5	5.47	0.01
LacCer (d18:1_15:0)-d7	855.6 > 271.3	5.41	0.01	PS (17:0_18:1)-d5	781.5 > 596.5	6.28	0.01
LPC (15:0)-d5	487.3 > 184.1	2.28	0.01	PS (17:0_20:3)-d5	805.5 > 620.5	5.93	0.01
LPC (17:0)-d5	515.4 > 184.1	2.20	0.01	PS (17:0_22:4)-d5	831.5 > 646.5	6.23	0.01
LPC (18:1)-d7	529.4 > 184.1	2.94	0.01	S1P (d18:1) d7	387.2 > 271.3	2.08	0.01
LPC (19:0)-d5	543.4 > 184.1	3.53	0.01	SHexCer (d18:1_12:0)	724.8 > 264.3	3.92	0.02
LPE (15:0)-d5	445.3 > 304.3	2.38	0.01	SM (d18:1_15:0)-d9	698.6 > 193.1	5.41	0.01
LPE (17:0)-d5	473.3 > 332.3	3.06	0.01	SM (d18:1_16:1)-d9	710.6 > 193.1	5.21	0.01
LPE (17:0)-d3	473.3 > 332.3	2.85	0.01	SM (d18:1_18:1)-d9	738.7 > 184.1	5.98	0.01
LPE (19:0)-d5	501.3 > 360.3	3.63	0.01	SM (d18:1_20:1)-d9	766.6 > 193.1	6.91	0.01
LPG (15:0)-d5	493.3 > 304.3	2.02	0.01	SM (d18:1_20:1)-d9	794.7 > 193.1	7.94	0.01
LPG (17:0)-d5	521.3 > 332.3	2.65	0.01	SM (d18:1_22:1)-d9	822.7 > 193.1	9.08	0.01
LPG (19:0)-d5	549.3 > 360.3	3.24	0.01	Sph (d17:1)	286.3 > 268.3	2.01	0.01
LPI (13:0)	548.3 > 271.3	1.30	0.01	TG (41:0) [NL-13:0]-d5	731.6 > 500.4	10.64	0.01
LPI (15:0)-d5				TG (43:1) [NL-15:1]-d5			
LPI (17:0)-d5	581.3 > 304.3	1.87	0.01 0.01	TG (45:1) [NL-17:1]-d5	757.7 > 500.4 785.7 > 500.4	10.66 10.81	0.01 0.01
LPI (17:0)-d5 LPI (19:0)-d5	609.3 > 332.3	2.51 3.11	0.01	TG (47:1) [NL-17:1]-d5	813.7 > 500.4		0.01
LPS (15:0)-d5	637.3 > 360.3		0.01	TG (48:1) [NL-18:1] d7	813.7 > 556.4 829.8 > 523.5	10.98 11.07	0.01
LPS (15:0)-d5	489.3 > 304.3	1.88		TG (49:1) [NL-17:1]-d5			
· · ·	517.3 > 332.3	2.51	0.01	· · · ·	841.8 > 556.5	11.16	0.01
LPS (19:0)-d5	545.3 > 360.3	3.13	0.01	TG (51:2) [NL-19:2]-d5	867.8 > 556.5	11.18	0.01
PA (15:0_18:1)-d7	685.6 > 570.6	5.97	0.02	TG (53:3) [NL-17:1]-d5	893.8 > 608.5		0.01
PC (15:0_18:1)-d7	753.6 > 184.1	6.45 E.6E	0.01	TG (55:4) [NL-19:2]-d5	919.8 > 608.5	11.21	0.01
PC (17:0_14:1)-d5	723.6 > 184.1	5.65	0.01	TG (57:4) [NL-21:2]-d5	947.9 > 608.5	11.39	0.01
PC (17:0_16:1)-d5	751.6 > 184.1	6.50	0.01				

quantitative analysis based on five spiked levels at 3 or 4 replicates

Conclusions

- ✓ A lipid profiling workflow in cells targeting over 1200 lipids in 54 sub-classes was developed and validated
- This workflow is ready to be used to accurately quantitate the change of lipidomic profiles in the development and treatment of pediatric leukemia

https://www.agilent.com/en/promotions/asms

This information is subject to change without notice.

For Research Use Only. Not for use in diagnostic procedures.

RA45051.6948032407

© Agilent Technologies, Inc. 2023 Published in USA, May 31,2023

The Future Plan

✓ The lipid profile of 200 samples taken from leukemia bone marrow in relapsed to non-relapsed cases will be compared to identify lipid predictors of relapse, which could guide the development of biomarkers for the prediction of relapse

