

Poster Reprint

ASMS 2023 6495 LC/TQ Launch

# Application robustness of the 6495 triple quadrupole LC/MS system for non-stop Pesticide analysis in black tea matrix

<u>Peter Weidner</u>, Patrick Batoon, Behrooz Zekavat, Anabel Fandino

# Agilent Technologies, Santa Clara, CA

# Introduction

System robustness is of utmost importance especially when analyzing samples for routine, inproduction, type of analysis. Additionally, when evaluating samples for meaningful scientific results, analysis of a large population of samples is necessary for good population statistics.

The new **6495 triple quadrupole LC/MS system** (G6495D) is equipped with VacShield and iFunnel technology that aims to provide high sensitivity and high-performance analysis while being robust and rugged enough to withstand the effects of deposition from a complex and dirty matrix.

- VacShield –ion injector capillary removal mechanism that enables quick routinemaintenance, reduces downtime, and preserves system stability.
- *iFunnel Technology* a dual-staged stacked ring ion funnel used to compress and concentrate the ion beam. Innovations within the iFunnel evacuate matrix components while maintaining injection-toinjection MRM precision.
- Instrument Intelligence built into the overall system architecture to monitor and ensure that the instrument is in good operating condition.

Compared to non-iFunnel systems, the 6495 LC/TQ provides about 10x improvement in signal while providing superior injection-to-injection measurement robustness and precision at sub-millisecond dwell times.

# VacShield Technology

Ease of maintenance and robustness



# Experimental

# **Sample Preparation**

Organic black tea was steeped in room temperature water for 2 hours. After incubation, one pouch of Agilent EN extraction salt (P/N 5982-6650)was added to the mixture, shaken, then centrifuged at 3000xg for 5 minutes. The black tea mixture was added into the Agilent QuEChERS Dispersive SPE for high pigment (10mL Acetonitrile per 2g tea leaves), followed by shaking and centrifugation as prior.

Supernatant was passed through a 0.45  $\mu$ m syringe filter, then spiked with 100 ng/g in relation to 8g black tea of LC TOF/QTOF/QQQ Pesticide Test Mix (P/N 5190-0449) and 3 isotope labelled compounds (Atrazine-d<sub>5</sub>, Diazinon-d<sub>10</sub>, Dimethoate-d<sub>6</sub>) for a final concentration 20pg/µL per analyte.

# Sample was injected directly with no further cleanup

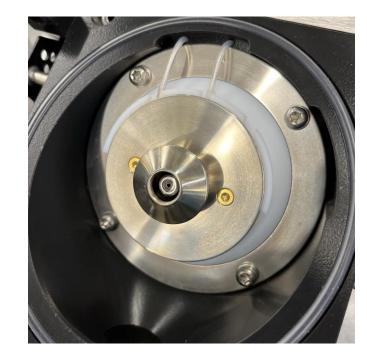
# LC/MS Method

| LC Parameter        | Agilent 1290 I                                                                                               | nfinity LC                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Guard Cartridge     | Agilent Poroshell EC C18, 2.1x5 mm, 2.7 µm (P/N 821725-911)                                                  |                                                    |
| Analytical Column   | Agilent Eclipse Plus C18 RRHD,<br>2.1x50 mm, 1.8 μm (P/N 959757-<br>902) @ 30°C                              |                                                    |
| Injection Volume    | 2 µL                                                                                                         |                                                    |
| Mobile Phase        | A) $H_2O$ + 5mM $NH_4$ -formate + 0.1%<br>formic acid<br>B) MeOH + 5mM $NH_4$ -formate +<br>0.1% formic acid |                                                    |
| Gradient Flow Rate  | 0.6 mL/min                                                                                                   |                                                    |
| Gradient            | Time (min)<br>0.27<br>0.33<br>1.10<br>2.00<br>3.00<br>3.10<br>5.40<br>5.41                                   | %B<br>2<br>50<br>55<br>65<br>85<br>100<br>100<br>2 |
| Stop Time/Post Time | 5.50 min / 2.50 min                                                                                          |                                                    |

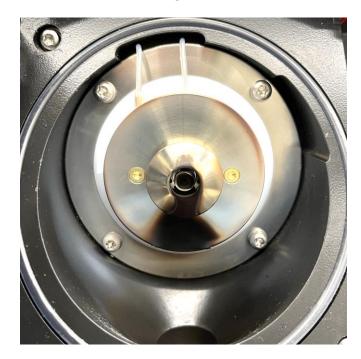


The Agilent 6495 triple quadrupole LC/MS system launched at ASMS 2023

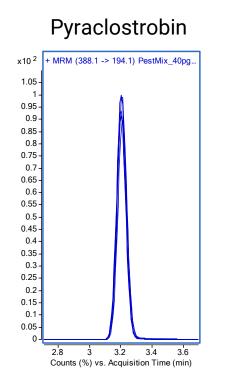
| MS Source Parameters | Agilent Jet Stream Source |
|----------------------|---------------------------|
| Drying Gas           | 15 L/min @ 290°C          |
| Sheath Gas           | 12 L/min @ 325°C          |
| Nebulizer            | 40 psi                    |
| Capillary Voltage    | 4000 V (+), 3000 (-)      |
| Nozzle Voltage       | 1500 V (+/-)              |


2

## Results and Discussion

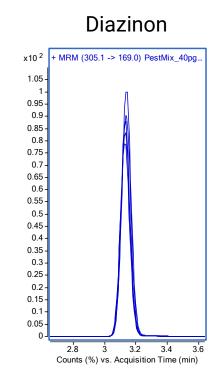

# **Black Tea Samples Injected**

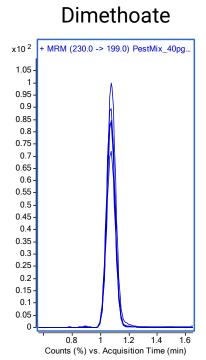



# **Inlet Before Experiment Run**

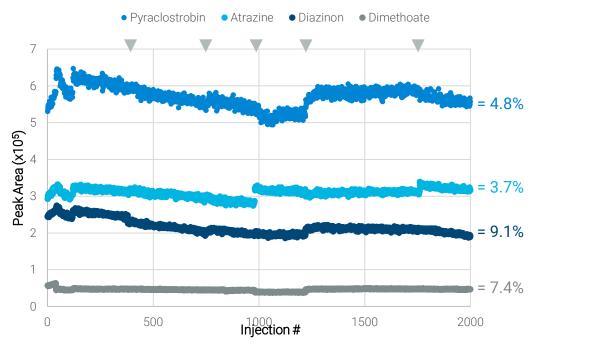


# **Inlet After Experiment Run**

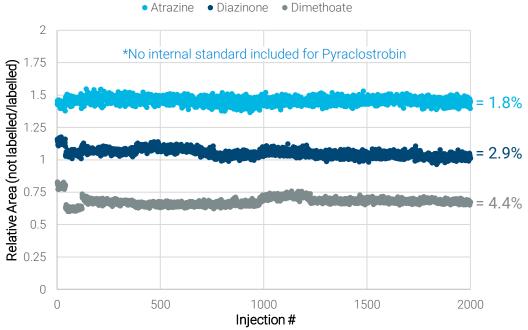




# **Replicate MRM chromatograms every 500 Injections**




#### Atrazine + MRM (216.1 -> 174.1) PestMix\_40pg.. x10<sup>2</sup> 1.05 -0.95 0.9 0.85 0.8 -0.75 0.7-0.65 -0.6-0.55 -0.5 -0.45 -0.4 0.35 -0.3 0.25 -0.2 -0.15 -0.1 -0.05 0 1.6 1.8 2 2.2 2.4 1.4

Counts (%) vs. Acquisition Time (min)






# Raw Peak Areas Per Injection



# **IS Corrected Peak Areas Per Injection**



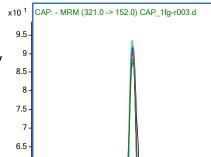
### **Results and Discussion**

Samples were injected back-to-back in a nonstop manner, resulting in the following number of MS experiments:

- 2000 MRM acquisitions of black tea sample injections
- 400 blank injections
- 100 precursor scans (to check MS1 calibration)
- 100 Full scans (to check MS2 calibration)

The instrument was operated for 16 days uninterrupted. A total black tea matrix volume of 4mL was injected. LC flow was directed to the ion source at all time during the chromatography run. During this time, no MS maintenance events such as cleaning, re-tuning, or mass calibration was carried out.

Raw Peak Areas for each analyte were plotted as a function of injection #. Raw Area abundance breakpoints were observed and coincided with LC-maintenance events such as solvent top-off and clogged injector needle change (marked by ▼). The first 40 injections had varied abundance due to needle wash not flowing correctly.


When plotting each analyte against their isotopically labeled internal standard, LC-maintenance events were corrected for, except for carryover, which remained until the next sample vial. It is important to note that this robustness test was completed after a set number of sample injections and physical time constraint; i.e. not due to instrument failure.

# Peak area statistics for each monitored analyte

| Analyte        | Raw Peak Area<br>%RSD | IS Corrected Peak<br>Area Ratio %RSD |
|----------------|-----------------------|--------------------------------------|
| Pyraclostrobin | 4.8%                  | No ISI correction                    |
| Atrazine       | 3.7%                  | 1.8%                                 |
| Diazinon       | 9.1%                  | 2.9%                                 |
| Dimethoate     | 7.4%                  | 4.4%                                 |

# Negative Mode Sensitivity Check (1fg Chloramphenicol)

Once the robustness test was x101 concluded, a Negative Mode 95-Sensitivity Check was immediately executed on the system to test for negative mode instrument 75detection limit of 1 fg 7-Chloramphenicol on-column. 65-

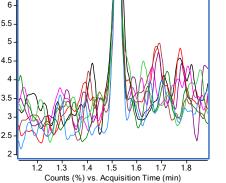


The system was found to be within tolerance and no issues with the instrument were flagged at the conclusion of the robustness test.

# **Tune Results Before Experiment (Autotune)**

| Procedure                            | Result |                                                  |
|--------------------------------------|--------|--------------------------------------------------|
| Initialize System Tune               | Passed |                                                  |
| Start tune Quad_Standard mode        | Passed |                                                  |
| Sure Dip Quad RF                     | Passed |                                                  |
| Run Detector Noise                   | Done   | ⊞ Summary                                        |
| Wait for Ion Source Settle           | Passed |                                                  |
| Sure Evaluate Signal Stability       | Passed | Run Date: February 21, 2023 05:56 PM             |
| Coarse Mass Calibration              | Passed | Due Tierry of Alexand Alexand Structure 20 years |
| Lag Factors Calibration              | Passed | Run Time: 1 hours : 11 minutes : 28 second       |
| Normalize Detector Gain              | Passed | Run Status: Done                                 |
| Mass Calibration in All Modes        | Passed |                                                  |
| Optimize MS1 Prefilter               | Done   | Overall Result Passed                            |
| Optimize MS2 Prefilter               | Done   |                                                  |
| Sure Lag Factors Calibration         | Passed |                                                  |
| Sure Mass Calibration in All Modes   | Passed |                                                  |
| Evaluate Spectrum Quality            | Passed |                                                  |
| Finish tune Quad_Standard mode       | Passed |                                                  |
| Start tune Quad_Large_Molecule mode  | Passed |                                                  |
| Normalize Detector Gain              | Passed |                                                  |
| Evaluate Spectrum Quality            | Passed |                                                  |
| Finish tune Quad_Large_Molecule mode | Passed |                                                  |
| Finalize Tune Procedure              | Passed |                                                  |

# **Tune Verification After Experiment (Checktune)**


| Results Summary                           |        |                                   |
|-------------------------------------------|--------|-----------------------------------|
| Procedure                                 | Result |                                   |
| Initialize Check Tune                     | Passed |                                   |
| Start check tune Quad_Standard mode       | Passed |                                   |
| Run Detector Noise                        | Done   |                                   |
| Wait for Ion Source Settle                | Passed | I Summary                         |
| Evaluate Signal Stability                 | Passed |                                   |
| Evaluate Mass Calibration in All Modes    | Passed | Run Date: March 09, 2023 09:15 PM |
| Evaluate Lag Factor Calibration           | Passed | Run Time: 13 minutes : 56 seconds |
| Evaluate Detector Gain                    | Passed |                                   |
| Evaluate Spectrum Quality                 | Passed | Run Status: Done                  |
| Finish tune Quad_Standard mode            | Passed |                                   |
| Start check tune Quad_Large_Molecule mode | Passed | Overall Result Passed             |
| Evaluate Detector Gain                    | Passed |                                   |
| Evaluate Spectrum Quality                 | Passed |                                   |
| Finish tune Quad_Large_Molecule mode      | Passed |                                   |
| Finalize Tune Procedure                   | Passed | *Checktune r                      |
|                                           |        | then Autotun                      |

\*Checktune results list was shorter than Autotune since no tuning or calibration was carried out

# Conclusions

- Peak area statistics revealed excellent response reproducibility, spanning over 2,000 injections and 16 days of non-stop operation. (Analytes RSD<10%)
- Examination of the ionization region shows severe matrix deposition, but did not interfere with the analysis
- Immediately after robustness testing, Negative Mode Sensitivity Check demonstrated excellent performance for detection of 1fg Chloramphenicol on-column.
- The system was able to pass the Checktune procedure without flagging any issues affecting system

Using *n*=8 injections, the response reproducibility of Chloramphenicol was determined to be RSD=13.9% indicating good sensitivity and reproducibility even without followup cleaning or maintenance.



performance.

References

5991-6357EN – Routine Multiresidue Pesticide Analysis using the Agilent 6470 Triple Quadrupole Mass Spectrometer

### https://www.agilent.com/en/promotions/asms

This information is subject to change without notice.

DE56468839

© Agilent Technologies, Inc. 2023 Published in USA, May 31,2023

