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Abstract

Purpose: Spectra annotation is a major challenge in 

untargeted small molecule analysis. Initial steps involve 

comparing unknown spectra with experimental spectral 

libraries. We propose a novel AI/ML confidence scoring 

system for definitive Orbitrap data identification using the 

mzCloud library.

Methods: A histogram gradient boosting model was 

employed to mimic scientists' evaluation of library search 

results. Multiple searches were simulated, learning from 

both true and false hits using data from the mzCloud 

curated library. The model utilized 170 input features to 

capture fragmentation spectra complexity, metadata, and 

query-hit matching scores, including Cosine, NIST, and 

HighChem-HighRes scores.

Results: The AI/ML model was validated with mzCloud 

standards, pending real sample validation. It was compared 

against NIST, Cosine, HighChem-HighRes, and a 2016 

confidence score.

Introduction

Spectra annotation is a primary challenge in untargeted 

analysis within small molecules applications. Comparison of 

unknown spectra against experimental spectral libraries is 

usually the first step of every annotation workflow. Ideally 

such identification algorithm provides list of best possible 

hits, where high ranking score unequivocally indicates, 

which library hit corresponds to unknown spectra. In real 

life, however the ambiguous results are unfortunately a daily 

routine, as isomeric and/or isobaric species may produce 

similar spectra, or because some regions of collision 

energies produce poorly specific spectra. This will result in 

multiple high scored hits, what does not help in taking 

decisions and driving conclusions. To answer that challenge, 

we propose a new AI/ML confidence scoring system for 

unequivocal spectra identification of Orbitrap data against 

Thermo Scientific  mzCloud  mass spectral library.

Materials and methods

Model Selection

A machine learning model aims to replicate the scientist's 

behavior in observing hit results during the compound 

identification through library searches. This is achieved by 

simulating multiple searches and learning from true and 

false hits. During the training the ML model receives a pair 

of query and hit spectra (along with metadata and other 

calculated features), and the label if the two spectra belong 

to the same compound or not. This learned information can 

then be used at real spectrum search: for each query and hit 

candidate a confidence can be predicted, if the spectrum 

pair belongs to the same compound. See Figure 1

The histogram gradient boosting model was selected for this 

research due to its robustness and flexibility. While any 

regression model could be applicable, this particular model 

is favored for its ability to handle missing features, a 

common occurrence in real-world datasets, as facilitated by 

the scikit-learn implementation. The 170 model input 

features were created to account for a variety of parameters 

reflecting complexity of fragmentation spectra (such as 

sparseness, balancenes, etc), its metadata (such as 

analyzer, isolation width or precursor mass and its accuracy) 

and matching pairs query-hit including ranking scores form 

Cosine, NIST and HighChem-HighRes matchings from 

symmetric search. See Figure 2 for some examples.

Data selection

Data for model training and validation were selected from 

mzCloud curated spectral library, which offers 34,000 

compounds belonging to different compound classes with 

3,462,578 MS2 spectra belonging to CID and HCD 

activation types, across 10-100 and 10-200 NCE levels, 

respectively. All compounds used for the model training and 

validation were known analytical standards defined by InChI 

and InChIKeys. For the search simulation, the spectra were 

selected from the Autoprocessed library and it was searched 

in the Reference library. To grant better variability and 

distribution of query and true hits, an intersection of 1600 

compounds existing in both Autoprocessed and Reference 

library were chosen, with additional 1600 compounds 

accounting for false hits. During the validation phase, an 

additional 3600 compounds were incorporated into the 

dataset to more accurately simulate real-world conditions. 

This adjustment reflects the scenario in which scientists 

query an unknown spectrum against a spectral library 

containing thousands of compounds, thereby reducing the 

probability of accurately identifying the correct match.

The search process is emulated by invoking the mzCloud 

APIs via a Python script, followed by the conversion of the 

resulting data into feature sets. This procedure is 

computationally intensive but amenable to parallelization. 

When executed with 80 parallel workers, the task completes 

in 10 hours on an ml.r6i.32xlarge AWS instance.

Validation additionally was performed using external data 

set the Food Safety Mass Spectral Library from Wageningen 

University. This library is a collection of 1,007 chemicals 

among which veterinary drugs, contaminants, pesticides 

and natural toxins (including metabolites). It was built 

acquiring standards in solvent using ultra high-pressure 

liquid chromatography (UHPLC) coupled to a Thermo 

Scientific  Orbitrap IQ-X  Tribrid  mass spectrometer, with 

positive ESI as the ionization interface. Each compound was 

acquired using 7 different collision energies generating more 

than 7,000 mass spectra in total1.

Results

Multiple validation methodologies were employed utilizing 

mzCloud mass spectral library data and the Food Safety 

Mass Spectral Library from Wageningen University1. Initially, 

the model was evaluated with query-hit spectrum pairs, 

where the model's output  was compared against actual 

InChIKey. These pairs were generated through search 

simulations, ensuring true hit exist in the database, while 

including also false hits. The model's accuracy was 

determined by counting the number of correct predictions it 

made for a given spectrum pair out of all possible spectrum 

pairs. A prediction is considered correct if the model 

accurately identifies both true positives and true negatives. 

The model achieved an accuracy of 89.2%. Additionally, the 

ROC AUC for AI/ML model was 0.95. For comparison, the 

ROC AUC for other scoring methods were as follows: 0.66 

for Cosine, 0.68 for HighChem-HighRes, 0.67 for NIST, and 

0.58 for the legacy confidence method.

A similar validation was conducted at the compound level, 

acknowledging that each compound is characterized by 

multiple spectra acquired at various CID and HCD NCE 

levels. Here, the model's input was a query spectrum, and a 

hit was defined as a compound, with the model determining 

if the query spectrum could belong to that compound. Using 

mzCloud mass spectral library data for this validation, the 

ROC AUC for the model was 0.99. Traditional match scores 

yielded significantly lower AUC values, as illustrated in 

Figure 4 (upper chart). The legacy confidence scoring model 

based on Bayesian Networks available currently in Thermo 

Scientific  Compound Discoverer  software achieved an 

ROC AUC of only 0.92. When using data from the Food 

Safety Mass Spectral Library, the AUC was slightly lower at 

0.97 but still outperformed other scoring methods.

The ranking capabilities of the model were also evaluated. 

When a spectrum of a certain compound is searched in the 

spectral library, the search yields a list of hit candidates. The 

true hit compound should be ranked high in that list, ideally 

on the first position. The ranking was compared with the 

legacy confidence score system, in the following way: for 

each query-hit spectrum pair the ranking in the hit result list 

was calculated, once with the new AI/ML confidence, once 

with the legacy one. Then the ranks were counted in a two-

dimensional heatmap, with the legacy confidence on the X 

axis and new AI/ML confidence on Y (See the Figure 5). 

Ideally both models should rank the true compound on the 

first rank, and it happened in majority of cases (yellow  cell 

of the heatmap). Cells on diagonal represent cases where 

both models ranked compounds in equal way. Above this 

diagonal the new AI/ML confidence model performs better, 

below this diagonal the legacy model correctly ranked 

spectra pairs. It can be seen on the Figure 5 (upper 

heatmap) that for approx. 7k spectra pairs new AI/ML model 

ranked better respect to legacy one, while for 1.3k spectra 

pairs, legacy confidence model performed better. The 

spectra pairs correspond to a specific number of 

compounds, here we achieved improvement for 104 

compounds, while model struggled with proper ranking for 

48 compounds, see tables in Figure 5. Such ranking 

evaluation was performed for both mzCloud mass spectral 

library data and Food Safety Mass Spectral Library

In the Figure 6 a real case is shown, where the new AI/ML 

confidence helps to distinguish true and false hits for the 

isomeric compound species. The HDC 40 spectrum of 

Diosmetin was searched in the mzCloud Reference library. 

The expectation was to achieve the correct ranking for hits 

and score values that will clearly distinguish between the 

right and false hits. The new AI/ML model achieved the goal, 

while legacy confidence score was not able to rank hits, nor 

properly distinguish between true and false hits. All scores 

were very low, suggesting none of hits was probable. The 

HighChem-HighRes scoring algorithm returned similarly 

high values for all hits, suggesting it can be any of three, but 

unable to indicate the true hit. Other two traditional scoring 

algorithms NIST and Cosine assigned higher value to one of 

the hits, but unfortunately both were false hits. 

Understanding the reasoning behind the outputs of an AI/ML 

model is essential. Shapley values serve this purpose by 

quantifying the contribution of each input feature to the 

model's final prediction, see Figure 7. These contributions 

can be displayed to the user, emphasizing the most 

influential input features for each query spectrum-hit 

spectrum pair, or aggregated at the compound level if 

multiple spectra are available for each compound in the 

library. In addition to the input feature name, a numerical 

value ranging from 0 to 1 can indicate the magnitude of its 

influence, while a directional sign (+/-) can show whether 

the feature positively or negatively affects the outcome.

Conclusions

The new AI/ML Confidence Score model demonstrates 

superior accuracy and classification capabilities for identity 

searches against an MS2 spectral database, surpassing 

traditional deterministic spectral similarity calculations used 

in mzCloud mass spectral library, including HighChem-

HighRes, NIST, Cosine, and the previous Confidence Score 

of Compound Discoverer software.  Over 170 features were 

engineered to incorporate various data and metadata clues 

analyzed by subject matter experts during library search 

candidate evaluations. Training on a substantial portion of 

the mzCloud mass spectral library enhances the 

understanding of scoring rationale in individual cases, 

allowing users to adjust specific scan conditions, such as 

varying collision energy, to improve confident identification. 

The new model will be available on the updated mzCloud 

mass spectral library site alongside the existing scoring 

methods.
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Figure 1. Input and output of the ML model
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Figure 3. Example of data in mzCloud mass spectral library: a) 

data available for one compound entry; b) m/z precursor ion 

distribution in training dataset; c) NCE distributions in training 

dataset

mzCloud Validation 400 compounds

Compounds with improved ranking 104

Compounds with wrong ranking 41

Compounds with equal ranking 255

Wageningen Validation 560 compounds

Compounds with improved ranking 48

Compounds with wrong ranking 28

Compounds with equal ranking 484

Figure 5. Ranking capabilities of the new AI/ML confidence 

model, compared with the legacy confidence model. Left: 

Validation on mzCloud dataset. Right: Validation on Food 

Safety Mass Spectral Library. 

Hits Metadata AI/ML 

Confidence

Legacy 

Confidence

HighChem-

HighRes

NIST Cosine

Diosmetin HCD 10, QE 78.6 8.1 89.1 47.1 61.1

Hispidulin CID 20, Fusion 11.4 8.1 84.3 46.3 61

Isokaempferide HCD 30, Fusion 4.6 9.8 81 74.9 96.5

Figure 6. Search results for Diosmetin and different scoring 

algorithms 

False Hit: Hispidulin, CID 20, Fusion False Hit: Isokaempferide, HCD 30, Fusion

True Hit: Diosmetin, HCD 10, QExactiveQuery: Diosmetin, HCD 40, ID-X

Figure 7. Different examples of ranked feature contributions 

with directional impact for model predictions

Shapley value indicates increased confidence of a true match 

since no other similar compound exist in the reference library

Shapley value decreases confidence since the cosine similarity 

excluding precursor ion is lower than expected for a true match

Shapley value decreases confidence since the cosine similarity 

excluding precursor ion is lower than expected for a true match

Shapley value indicates increased confidence because 

fragmentation pattern is unique in the reference library

Figure 2. Two examples of input features: Balanceness (up) 

and Sparseness (down), defining spectra properties. Figure 4. AUC scores at the compound level. Searching 

executed in mzCloud mass spectral library

Searching in mzCloud 

Autoprocessed library

Searching in Food Safety 

MS Library.
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