1D/2D-UHPLC-MS System and its use in the Field of Drug Metabolism and Pharmacokinetics

Matthias Schiella*, Frank Steiner^b, Maria Grübner^b, Chris Tuczemskyi^c

^aSanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany

- ^bThermo Fisher Scientific, Germering, Germany
- ^cThermo Fisher Scientific, Hemel Hempstead, United Kingdom
- *Corresponding author: Matthias.Schiell@sanofi.com

INTRODUCTION

Drug metabolism and pharmacokinetics (DMPK) plays a crucial role in the development of new active pharmaceutical ingredients. The elucidation of metabolites has a great importance for the identification of metabolic liabilities of pharmacologically active compounds and cross species comparison for validation of toxicological animal models. Even very low concentrations of metabolites may play a major role. Separation of the biodegradation products by Ultra-High Performance Liquid Chromatography (UHPLC) coupled with mass spectrometry (MS) detection is the technology of choice, with high importance of well synchronized hyphenation.

Thus, a very flexible system to separate a high diversity of molecules in a wide range of operation modes is required. The Thermo Scientific[™] Vanquish[™] Flex UHPLC system consists of two binary pumps, DADs and column ovens equipped with four 2-position 6-port valves and one autosampler controlled by Thermo Scientific[™] Chromeleon[™] Chromatography Data system. The arrangement of the individual modules allows analysis in 1D-as well as 2D-LC mode without hardware reassembling.

Collaboration of Thermo Fisher Scientific and Sanofi

sanofi

New options in 2D-LC with a customized Vanquish UHPLC configuration

Thermo Fisher

Highlights

The recovery of the 1^{st} dimension (¹D) fraction in 2^{nd} dimension (²D) is defined by the transfer factor. It is necessary to be able to determine the transfer factor between ¹D and ²D.

(Quantity ²D / Quantity ¹D) x 100 = % transfer Transfer factor (UV signal of DAD2 was used): near 98 % High flexibility for dilution of ¹D flow or alternative elution from ²D column by ¹D pump, ²D pump or even simulation of tertiary gradients by using ¹D pump and ²D pump in parallel

parallel

1D Pump										
0.0	A		5	£1 1£1		L4 14.4	10 10		10	ate - 20
lution of the s	ample			2D Pu	mp					- East
								14.1		16.1 (6.2

Operation in detail

Summary

- large organic volume injection possible
 easy method development
 high flexibility in operation mode
 wide range of buffers for elution and MS detection
 RD and MS available in either dimension
- REFERENCES
- 1. B. Koshel, R.Birdsall, W. Chen, Two-dimensional liquid chromatography coupled to mass spectrometry for impurity analysis of dye-conjugated oligonucleotides, J. Chromatogr. B 1137 (2020) 121906.
- 2. Sonja Krieger, Automated Switching Between 1D-LC and Comprehensive 2D-LC Analysis

Figure 1: Configuration of the 1D/2D-UHPLC-MS-RD system

Figure 2: ²D with splitter (MS and RD detection)

sanofi

The heart: 4 independent valves

Sample loading (see figure 2) ¹D pump: 0,1 ml/min ²D pump: 1 ml/min

ESI pump

MS

Elution ²D: 3 x 100 mm; 1ml/min Splitter: 1/3

Motivation: loading of high organic sample

~	Concentration - 5 gM, Boats of administration - pd, Vengting time = 0.25 blue										
1 I						11					
-	- 54		÷	,	4	ale hel	74	ù.		10	16. 16.

Sample loading (see figure 3) ¹D pump: 0,1 ml/min ²D pump: 1 ml/min

Elution ²D: 3 x 100 mm; 0,6ml/min

Motivation: focusing of high organic and large volume sample for sharp peaks

Motivation: best separation in ¹D without loss in ESI signal

2D De

Figure 4: 1D with dilution before MS

