

Technical Report

Application for Plant Metabolome Analysis Using the GC/MS/MS Smart Metabolites Database

Mami Okamoto¹, Junko Takanobu¹, Muneo Sato¹, Satoshi Yamaki², Yuji Sawada¹, Masami Yokota Hirai¹

Abstract:

The GC/MS/MS Smart Metabolites Database contains analytical conditions for the high-sensitivity detection of 475 metabolites commonly involved in the central metabolism of all biological organisms.

Using this database, 170 metabolites, including amino acids, organic acids, and sugars, were detected in mature tomato leaves. Furthermore, by verifying the analytical accuracy of an internal standard substance, ribitol, based on the relative elution time, detection intensity, and reference ion ratio, we confirmed that it is possible to quantitatively detect metabolites with a high level of accuracy.

Keywords: plants, metabolomics, extracts, GC/MS/MS

1. Introduction

The types and quantities of low-molecular-weight metabolites in plants determine the important characteristics of agricultural products such as color, flavor, and fragrance. Therefore, there is a demand for an efficient and broadly applicable metabolomic method specialized in analyzing plant metabolomes. In the present study, we performed a metabolomic analysis of mature tomato leaves using the GC/MS/MS Smart Metabolites Database, and then verified the analytical accuracy. This database enables users to perform a wide range of high-accuracy analyses after a short training period on the GC-MS/MS system.

2. Analytical Method

An internal standard substance, ribitol, was added to an 80% methanol extract of freeze-dried mature tomato leaves. The mixture was derivatized via methoximation and trimethylsilylation (TMS). To enable a comparison between the samples used in the analysis, a quality control (QC) sample was prepared for performing QC sample-based normalization by mixing equal amount of all samples. The QC sample was pretreated via a similar procedure. Subsequently, employing the conditions listed in Table 1 and using the MRM analytical method included in the Smart Metabolites Database, the samples were analyzed for 475 compounds.

GC-MS Column Glass Insert Autoinjector	: GCMS-TQ8040 : BPX-5 (30 m, 0.25 mm l.D., df=0.25 µm) (SGE, P/N : 0! : Split insert with wool (RESTEK, P/N : 225-20803-01) : AOC-5000 Plus	54101)				
GC		MS				
Injection Port Temp. Column Oven Temp. Injection Mode Split Ratio	: 250 °C : 60 °C (2 min) → (15 °C /min) → 330 °C (3 min) : Split : 30	Interface Temp. Ion Source Temp. Measurement Mode Loop Time	: 280 °C : 200 °C : MRM : 0.25 sec			
Carrier Gas Control Injection Volume	: Linear velocity (39.0 cm/sec) : 1 μL					

Table 1 Analytical conditions

3. Results

Fig. 1 shows an example of a total ion current (TIC) chromatogram obtained from the analytical measurements.

1 RIKEN Center for Sustainable Resource Science (CSRS)

2 Analytical & Measuring Instruments Division, Shimadzu Corporation

The results confirmed that the internal standard substance ribitol can be detected with good repeatability. Fig. 2 shows a mass chromatogram of ribitol in the QC samples. Table 2 shows the relative elution time, detection intensity, and reference ion ratio in the QC samples and the corresponding variability (relative standard deviation, RSD).

Fig. 2 Mass chromatogram of TMS-derivatized products of the internal standard

	Relative Elution Time (min.)	Detection Intensity (area value)	Reference Ion Ratio (%)
QC No. 1	12.306	2,097,224	80.44
QC No. 2	12.306	2,213,044	80.83
QC No. 3	12.304	2,187,242	81.50
QC No. 4	12.303	2,098,004	80.20
Average	12.305	2,148,879	80.70
%RSD	0.01	2.80	0.70

Table 2 Repeatability of ribitol detection

We detected 170 TMS-derivatized metabolites in the mature tomato leaves, as indicated in Table 3. Among the detected compounds, mass chromatograms of a sugar (glucose-meto-5TMS), organic acid (fumaric acid-2TMS), amino acid (valine-2TMS), and nucleoside (adenosine-4TMS) are shown in Fig. 3.

Fig. 3 Mass chromatograms of a sugar (glucose-meto-5TMS), organic acid (fumaric acid-2TMS), amino acid (valine-2TMS), and nucleoside (adenosine-4TMS)

		_		,	,
1	1,6-Anhydroglucose-3TMS	61	Fumaric acid-2TMS	121	Norepinephrine-5TMS
2	2-Aminoadipic acid-3TMS	62	Galactosamine-5TMS(1)	122	Octopamine-4TMS
3	2-Aminoethanol-2TMS	63	Galactosamine-5TMS(2)	123	Oleamide-TMS
4	2-Aminoethanol-3TMS	64	Galactose-meto-5TMS(1)	124	Ornithine-4TMS
5	2-Aminopimelic acid-3TMS	65	Galactose-meto-5TMS(2)	125	Pantothenic acid-3TMS
6	2-Deoxy-glucose-4TMS(1)	66	Galacturonic acid-meto-5TMS(1)	126	Phenylalanine-2TMS
7	2-Deoxy-glucose-4TMS(2)	67	Galacturonic acid-meto-5TMS(2)	127	Phosphoric acid-3TMS
8	2-Deoxy-glucose-meto-4TMS	68	Glucaric acid-6TMS	128	Proline-2TMS
9	2-Hydroxyglutaric acid-3TMS	69	Gluconic acid-6TMS	129	Psicose-meto-5TMS(1)
10	2-Hydroxyhippuric acid-3TMS	70	Glucono-1,5-lactone-4TMS	130	Psicose-meto-5TMS(2)
11	2-Ketoadipic acid-meto-2TMS(2)	71	Glucosamine-5TMS(1)	131	Putrescine-4TMS
12	2-Ketoadipic acid-oxime-3TMS(2)	72	Glucosamine-5TMS(2)	132	Pyridoxal-meto-2TMS(1)
13	2-Ketoglutaric acid-meto-2TMS	73	Glucose 6-phosphate-meto-6TMS(1)	133	Pyridoxamine-3TMS
14	3-Aminoglutaric acid-2TMS	74	Glucose-meto-5TMS(1)	134	Pvruvic acid-meto-TMS
15	3-Aminopropanoic acid-3TMS	75	Glucose-meto-5TMS(2)	135	Rhamnose-meto-4TMS(1)
16	3-Dehvdroshikimic acid-meto-3TMS(2)	76	Glucuronic acid-meto-5TMS(1)	136	Rhamnose-meto-4TMS(2)
17	4-Aminobutyric acid-2TMS	77	Glutamic acid 5-methylester-2TMS	137	Ribitol-STMS
18	4-Aminobutyric acid-3TMS	78	Glutamic acid-3TMS	138	Ribonic acid-5TMS
19	4-Hydroxyphenyllactic acid-3TMS	79	Glutamine-4TMS	139	Ribose-meto-4TMS
20	4-Hydroxyphenylpyruvic acid-meto-2TMS	80	Glyceric acid-3TMS	140	Ribulose-meto-4TMS
21	5-Aminovaleric acid-3TMS	81	Glycerol-3TMS	141	S-Benzyl-Cysteine-4TMS
22	5-Dehydroquinic acid-meto-4TMS	82	Glyceror STMS	142	Sedohentulose 7-phosphate-meto-7TMS
23	5-Oxoproline-2TMS	83	Hippuric acid-TMS	143	Serine-2TMS
24	6-Phosphoglucopic acid-7TMS	84	Histidine-3TMS	144	Serine-3TMS
25	Acetylalycine-2TMS	85	Histidine-STMS	145	Shikimic acid-4TMS
26	Aconitic acid-3TMS	86	Indol-3-acetic acid-2TMS	146	Sorbose-meto-5TMS(1)
27	Adenosine-4TMS	87	Inosine-4TMS	140	Sorbose-meto-5TMS(2)
28	Alanine-2TMS	88	Inositel_6TMS(2)	1/18	Spermine-6TMS
20	Allantoin-3TMS	89	Isocitric acid-4TMS	140	Subervlalvcine-2TMS
30		90		150	Sucrose_8TMS
31	Allose-meto-5TMS(1)	91	Isomaltose-meto-8TMS(1)	150	Tagatose-meto-5TMS(2)
37	Allose-meto-STMS(7)	92	Isomaltose-meto-8TMS(2)	157	Tartaric acid-ATMS
32	Arabinose-meto-ATMS	92	Kypurepipe-2TMS	152	
3/	Arabitol-5TMS	0/	Kynurenine 2TMS	153	Threopic acid-4TMS
35		95	Lactitol-9TMS	155	Threonine_3TMS
36	Assorbic acid-ATMS	96	Lactose-meto-8TMS(1)	155	Trebalose_SMTS
37		97	Lactose-meto-8TMS(2)	150	Triethanolamine-3TMS
38		97		159	Tryptamine-2TMS
30	Batyl alcohol-2TMS	90		150	Tryptonhan-3TMS
40	Riotin 2TMS	100	Lysine 41015	160	
40	Cadaverine_ATMS	100	Lyxose meto 4TMS(2)	161	Tyrosine-3TMS
41	Citramalic acid-3TMS	107	Malic acid-3TMS	167	
42	Citric acid-ATMS	102	2MTP-IntitleM	163	Ureidopropionic acid_3TMS
43	Cytidine-4TMS	103	Maltose-meto-8TMS(1)	164	Ureidosuccinic acid-31MS
45	Dibydroorotic acid-3TMS	105	Maltose-meto-8TMS(7)	165	Uridine-3TMS
45	Dihydrouracil-TMS	105	Mannitol_6TMS	166	Urocanic acid-2TMS
40	Dihydroxyacetone phosphate-meto-3TMS(1)	107	Mannose 6-phosphate-meto-6TMS(1)	167	Valine-2TMS
48	Dihydroxyacetone phosphate-meto-3TMS(7)	107	Mannose 6-phosphate-meto-6TMS(2)	168	Xylose-meto-4TMS(1)
40	Docosabexaenoic acid-TMS	109	Mannose-meto-5TMS(1)	169	Xylose-meto-4TMS(7)
50	Docosapentaenoic acid-TMS	110	Mannose-meto-5TMS(2)	170	Xylulose-meto-4TMS
51	Dopa-4TMS	111	Melatonin-TMS	170	Xylaiose meto 41Wis
52	Donamine-4TMS	112	meso-Ervthritol-4TMS	-	
52	Ervthrose 4-phosphate-meto-ATMS(1)	112	Methonrene acid-TMS	-	
54	Erythrose 4-phosphate-meto-4TMS(7)	114	Metoprolol-2TMS	-	
55	Envthrulose-meto-3TMS(1)	115	N-Acetyl-Lysine-2TMS	-	
56	Envthrulose-meto-3TMS(2)	116	N-Acetylmannosamine-meto-//TMS(1)		
57	Fructose 6-phosphate-meto-6TMS	117	N-Acetylmannosamine meto 4TMS(7)	-	
58	Fructose-meto-5TMS(1)	118	N-Acetylneuraminic acid_6TMS	-	
59	Fructose-meto-5TMS(7)	110	N-Acetyl-Ornithine-4TMS		
60	Fucose-meto-4TMS(1)	120	N-Acetyltyrosine-2TMS		
		120	14 / ICCLYIC/10311C-2 11VI3	1	

4. Summary

A wide range of metabolites (475 components) can be analyzed using the GC/MS/MS Smart Metabolites Database. We detected 170 TMS-derivatized metabolites in mature tomato leaves, including multiple substance groups involved in the central metabolism of mature tomato leaves, such as sugars, amino acids, and organic acids. RSD was < 5 % for all internal standard substance detection accuracy criteria (relative elution time, detection intensity, and reference ion ratio), indicating that quantitative comparisons of metabolites in plant samples are possible. Using this application for plant metabolome analysis, metabolic products corresponding to a wide range of agricultural attributes can be examined.

Acknowledgments

This study was performed based on "Technologies for creating next-generation agriculture, forestry and fisheries" from the Cross-ministerial Strategic Innovation Program (SIP) of the Japan's Council for Science, Technology and Innovation (administered by the Bio-oriented Technology Research Advancement Institution, National Agriculture and Food Research Organization (NARO)).

Triple Quadrupole Gas Chromatograph Mass Spectrometer

GCMS-TQ8040

Smart Performance That Boosts Routine Analytical Work

GC-MS/MS is useful for measuring trace quantities of various chemical substances present in a variety of sample types. However, specifying several parameter settings and employing suitable methods are required when using this technique.

Nevertheless, GCMS-TQ8040 can dramatically increase the productivity by automating tedious method creation processes and simultaneously analyzing multiple components with high sensitivity.

Smart Productivity

- Includes a new firmware protocol.
- Simultaneously analyzes a wide range of compounds with high sensitivity and high accuracy.
- Twin Line MS system minimizes the replacement of columns.

Smart Operation

- Smart MRM automatically creates optimized methods.
- Automatically searches for optimal transitions.
- AART function automatically adjusts retention times.

Smart Performance

- Patented high-sensitivity ion source technology offers even higher sensitivity.
- OFF-AXIS Ion Optics reduces noise.
- Capable of performing high-sensitivity analysis even as a single GC-MS system.

Comparison of mass chromatograms of metabolites present in standard human plasma Brochure: C146-F251

Database for GC/MS Analysis of Metabolites Smart Metabolites Database

Simultaneous MRM Measurement of 475 Components Enabling the Detection of Trace Components

The GC/MS and GC/MS/MS database software supports metabolite measurements.

Measurements using the GCMS-TQ system enable high-sensitivity and separation MRM analysis. Metabolomics measures samples comprising a large number of metabolites and a wide variety of matrices. Therefore, it is difficult to analyze many compounds because of overlapping component peaks.

However, such effects can be avoided by using MRM measurements and performing mass separation twice. Consequently, MRM can detect components that were previously not detectable using conventional scan and SIM methods.

Brochure: C146-E277

First Edition: August, 2016

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedure.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, product/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation or its affiliates, whether or not they are used with trademark symbol "TM" or "®". Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services. Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.