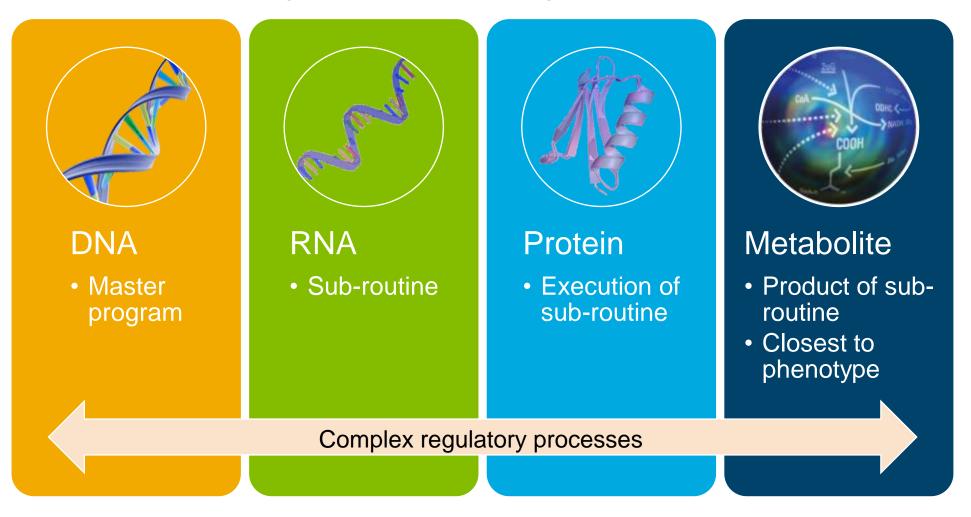

Accelerate Your Research with Advanced Omics Solutions

Christine Miller Omics Market Manager ASMS 2018



ASMS 2018 For Research Use Only. Not for use in diagnostic procedures.

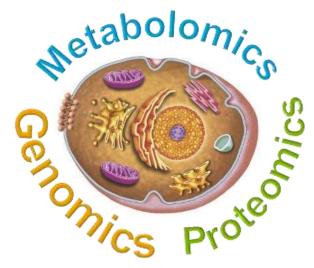
Biology Is Integrated

Multi-omics increases biological understanding

Agilent Solutions for -Omics

The complexity of biology presents enormous challenges to understanding even simple systems.

Agilent is a trusted leader in developing the:

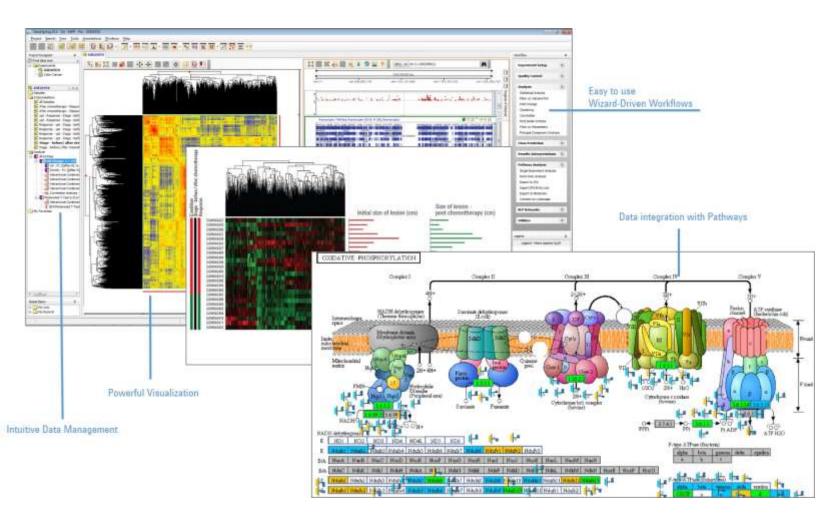

Instrumentation

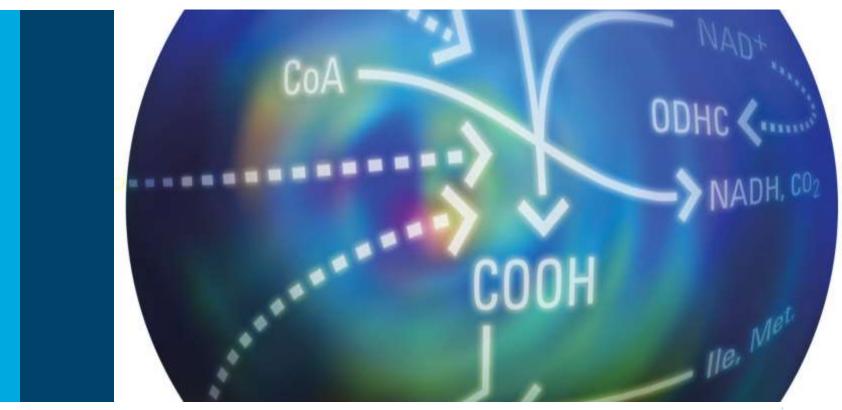
Consumables

Analytical methods

Software solutions

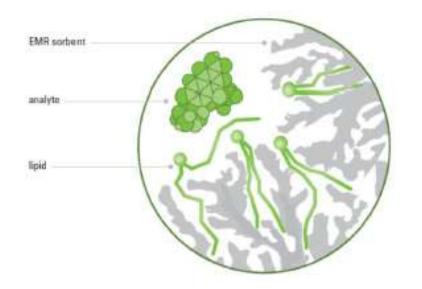
...needed to integrate multi-omics data.




Mass Profiler Professional and Pathway Architect Chemometric analysis and biological contextualization

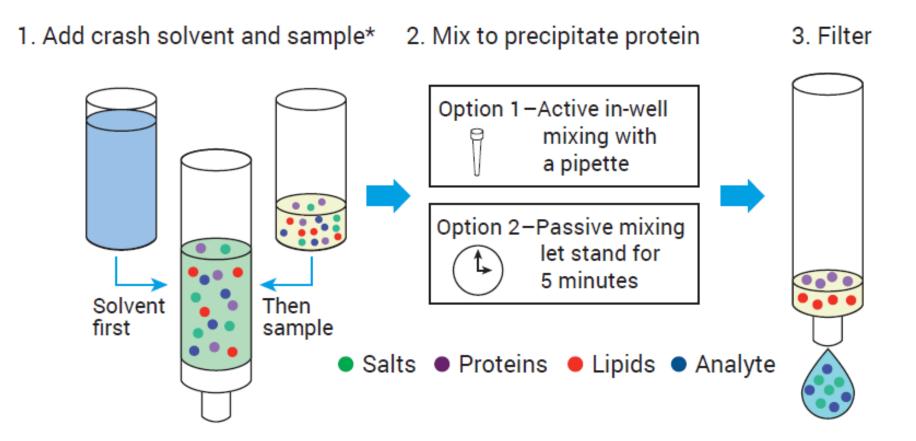
- Supports multi-omics analysis
- Includes multivariate statistical analysis
- Offers correlation analysis for discovery of new biological relationships
- Connects meta data to biology
- Visualizes results directly on pathways
- Create pathway-directed experiments

Metabolomics Workflows



Captiva EMR-Lipid

Improved efficiency: Unique EMR—Lipid mechanism combines size exclusion and hydrophobic interactions between the sorbent and the long aliphatic chain of the lipids


Better speed and precision: Solvent retention frit streamlines and automates your in-well protein precipitation workflow

An easier flow: An advanced filter design and construction technology ensure clog-free operation

Captiva EMR-Lipid Cleanup Procedure

* Alternatively, protein precipitation (Steps 1 and 2) can be performed offline (Option 3), at which point the sample can be transferred to Step 3.

Efficiency of Biological Fluid Matrix Removal Using Agilent Captiva EMR-Lipid Cleanup (5991-8006EN)

Demonstrates phospholipids removal in a variety of common biological fluids based on in-well protein precipitation

- Serum and CSF
- Human plasma with various anti-coagulants (five type)
- Animal plasma with various anti-coagulants (four type)

Comparison with major competitors products

Ease-of-elution for in-well protein precipitation (PPT)

Efficiency of Biological Fluid Matrix Removal Using Agilent Captiva EMR—Lipid Cleanup

Application Note

Clinical Research

Authors

Limian Zhao and Derick Lucas Agilent Technologies, Inc.

Abstract

The Agilent Captiva Enhanced Matrix Removal-Lipid (Captiva EMR-Lipid) is the next generation of EMR product, and is formatted in SPE cartridges or 96-well plates. Phospholipids are widely recognized as the prominent interferences in biological fluids. They not only affect the MS response of many analytes negatively, but are also difficult to remove from samples without analyte loss. This study demonstrates the application of Captiva EMR-Lipid cartridges and plates for phospholipid removal in various biological fluids. The phospholipid removal capabilities of Captiva EMR-Lipid were evaluated for many biological fluids from human and animal sources, with or without the addition of different anticoagulants. The procedure involves an in situ protein precipitation step followed by pass-through cleanup by Captiva EMR-Lipid. The efficiency of matrix removal was determined by the weight of residual matrix and the chromatographic profile of phospholipids through a precursor ion scan for product ion 184 m/z. A thorough comparison study of currently available products was evaluated for phospholipid removal based on the recommended product protocols. The results demonstrated that Captiva EMR-Lipid provides >99 % phospholipid removal, superior eluent clarity, easier flow, and substantially less clogging when compared to other products performance.

Impact of Phospholipid Removal

Demonstrates impact of phospholipids in biological fluids on LC/MS analysis

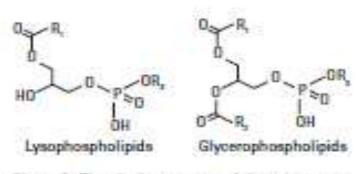
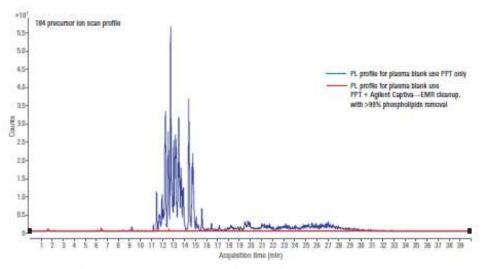
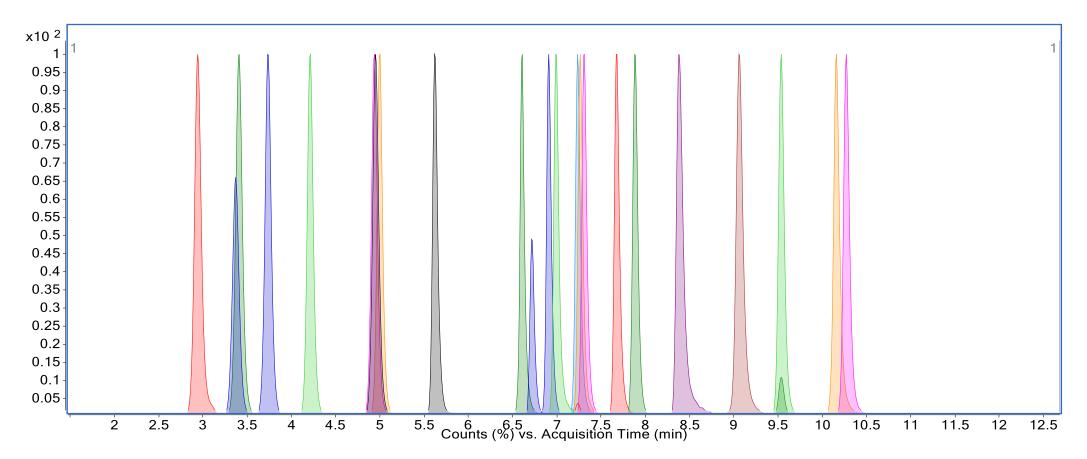


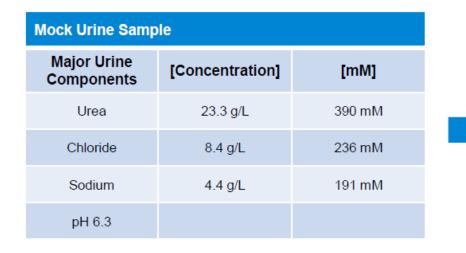
Figure 1. Chemical structures of the two most important groups of phospholipid.



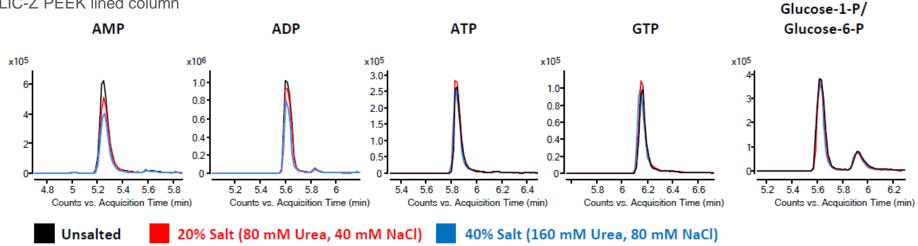

Figure 4. Overlapped chromatograms for phospholipids profile by monitoring a precursor ion scan for 184 m/z.

Captiva EMR-Lipid provides removal of >99% of phospholipids in various biological fluids.

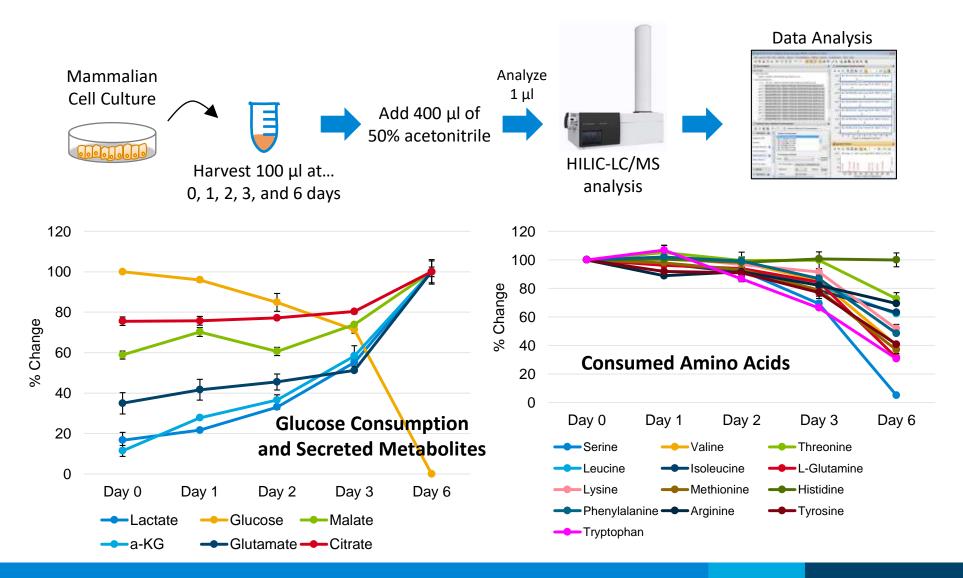
Underivatized Amino Acid Analysis


Poroshell HILIC-Z, 2.7 µm, 2.1x100mm

Mobile Phase A = 20 mM ammonium formate in water, pH=3 Mobile Phase B = 20 mM ammonium formate in 90% acetonitrile in water, pH3 Flow Rate = 0.6 mL/min Agilent Jet Stream source, positive ion mode


Robust Performance in Negative Mode

10-compound metabolomics test mix spiked with and without salt Mobile Phase 10 mM ammonium formate pH=9


Made a 4M Urea, 2M NaCl stock solution for salt spike-in experiment.

HILIC-Z PEEK lined column

Metabolomics Analysis of Culture Media Poroshell HILIC-Z, 2.7 µm, 2.1x100 mm

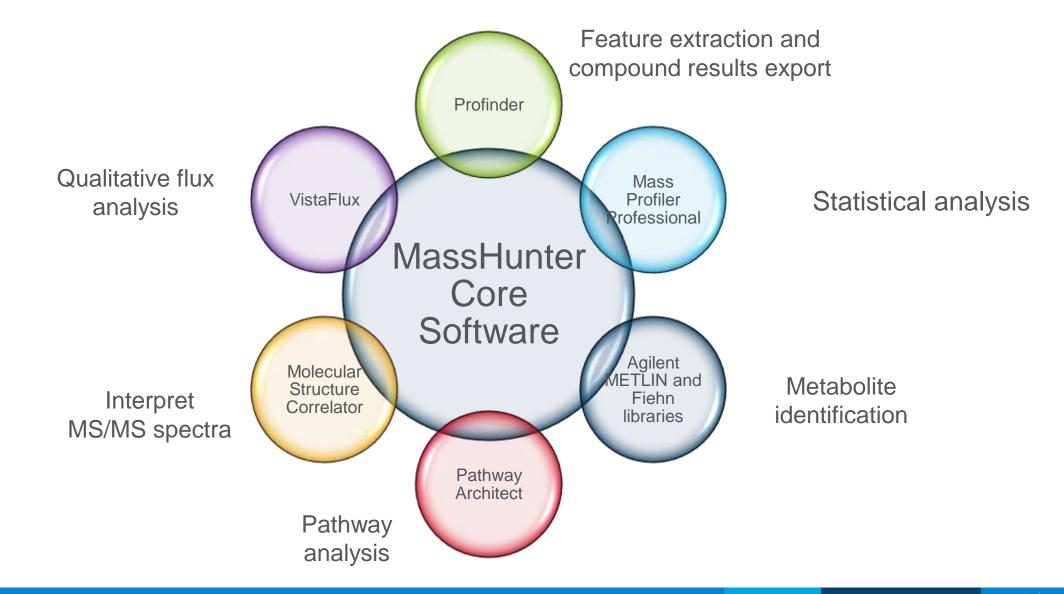
Purine Metabolism in MTX-treated Cells Poroshell HILIC-Z, 2.7 µm, 2.1x100 mm

GAR AICAR SAICAR dUMP dTDP x104 -ESI EIC(337.0550) x104 -ESI EIC(285.0490) x103 -ESI EIC(453.0660) x105 -ESI EIC(307.0330) x103 -ESI EIC(401.0150) DMSO Additive ΜΤΧ 0.5 9.5 10 10.5 8.4 8.6 8.8 9 9.2 9.4 10 10.5 7.6 7.8 8 8.2 8.4 8.2 8.4 8.6 8.8 9 9.2 11 x10⁵ -ESI EIC(285.0490) x104 -ESI EIC(337.0550) x104 -ESI EIC(453.0660) x10⁵ -ESI EIC(307.0330) x103 -ESI EIC(401.0150) **DMSO** No MTX Additive 0.5 05 10.5 8.4 8.6 8.8 9 9.2 9.4 10.5 7.6 7.8 8 8.2 8.4 9.5 10 10 11 8.2 8.4 8.6 8.8 9 9.2 Counts vs. Acquisition Time Counts vs. Acquisition Time Counts vs. Acquisition Time Counts vs. Acquisition Time Counts vs. Acquisition Time

MTX = methotrexate-treated K562 leukemia cells

Mobile Phase A = 20 mM ammonium formate in water, pH=9Mobile Phase B = 20 mM ammonium formate in 90% acetonitrile in water, pH9Agilent Jet Stream source, negative ion mode

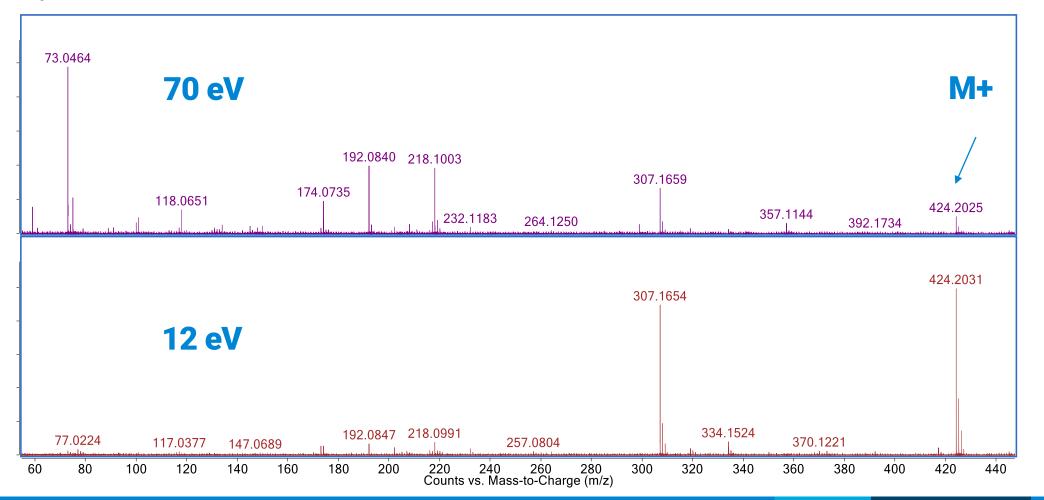
Agilent Instrumentation For Metabolomics

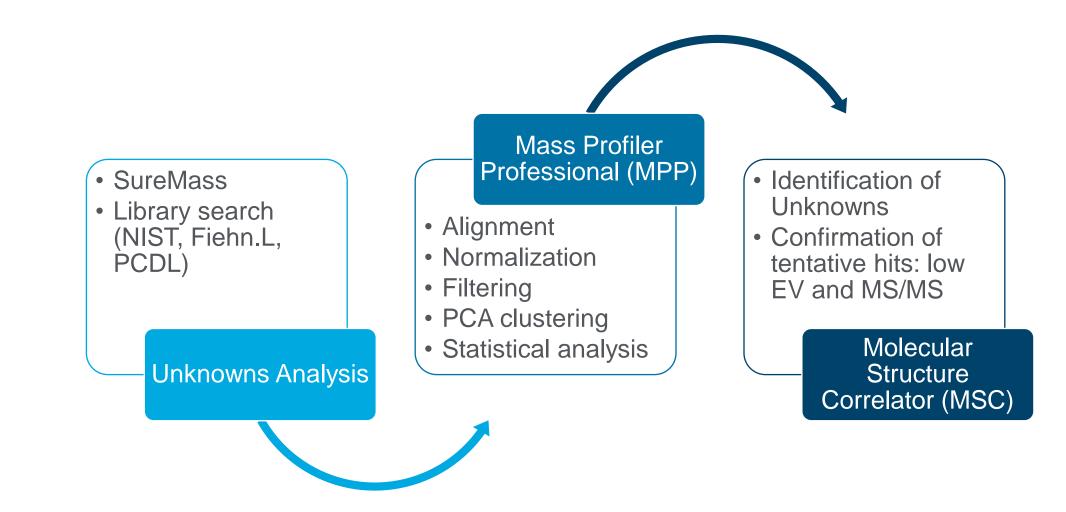

New MS/MS Functionality on the LC/Q-TOF: Iterative Exclusion

Mode: MS	10 Max Precursor Per Cycle	Static Exclusion Range L Static Exclusion Ran	V OSE FC TOL MOTMO DECISIONS
(Seg)	Precursor Threshold	Start m/z E	End m/z Iterative MS/MS
Auto MS/MS (Seg)	Abs. Threshold 3000 counts Rel. Threshold (%) 0.001 %		Mass error tolerance (+/- ppm) 10 RT exclusion tolerance
Targeted MS/MS (Seg)	Active Exclusion		0.2 (-min) 0.2 (+min)


1	Sample Name	Sample Position	Method	Data File	Sample Type	Inj Vol (µ)	Iterative	
1	wash	Vial 1	peptide-mapping-15min-400uL-6s.m	wash01.d	Sample	20	CENCLO MORANIA	was
2	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-auto-r001.d	Sample	3		
3	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-auto-r002 d	Sample	3		
4	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-auto-r003.d	Sample	3	.)	
5	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-auto-r004.d	Sample	3		
6	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-iterative-r001.d	Sample	3	start	
7	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-iterative-r002.d	Sample	3	iterative	
8	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-15min-400uL-6s.m	20170913-mAb-untreated-15min-iterative-r003.d	Sample	3	iterative	
9	mAb untreat desalt 0 2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s m	20170913-mAb-untreated-30min-auto-r001.d	Sample	3		
0	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s m	20170913-mAb-untreated-30min-auto-r002.d	Sample	3		
11	mAb untreat desalt 8.2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s.m	20170913-mAb-untreated-30min-auto-r003.d	Sample	3	the second	
12	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s m	20170913-mAb-untreated-30min-iterative-r001.d	Sample	3	start	1 1
13	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s.m	20170913-mAb-untreated-30min-iterative-r002.d	Sample	3	iterative	
14	mAb untreat desait 0 2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s m	20170913-mAb-untreated-30min-iterative-r003.d	Sample	3	iterative	1
15	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s m	20170913-mAb-untreated-30min-2ug-auto-r001.d	Sample	10		/
16	mAb untreat desalt 0.2ug/uL	P1-F4	peptide-mapping-30min-400uL-6s m	20170913-mAb-untreated-30min-2ug-auto-r002.d	Sample	10	~	1
1.10		100 2 (100 2			Law A			-

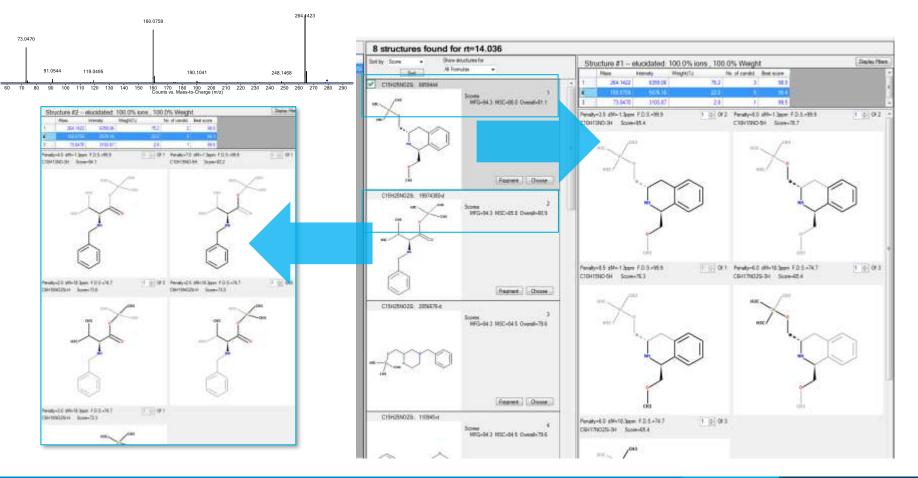
Agilent Metabolomics Application Software




Using Low Electron Energy to Confirm Molecular Ion Produces Less Complex El Spectra

Kynurenine, 3TMS

Untargeted GC/Q-TOF Workflow



Unknown Identification Using MSC

Correlate MS/MS Fragment Ions With Proposed Structures

MS/MS, 17 eV CE 20V

MassHunter Profinder

The Power of 3D Batch Feature Finding

 Add all experimental data files to a project

Optionally add group information

- Extract features from each data file in batch
- Compile list of all features with composite spectra

Single software for untargeted and targeted feature extraction

Fast, multi-threaded batch processing

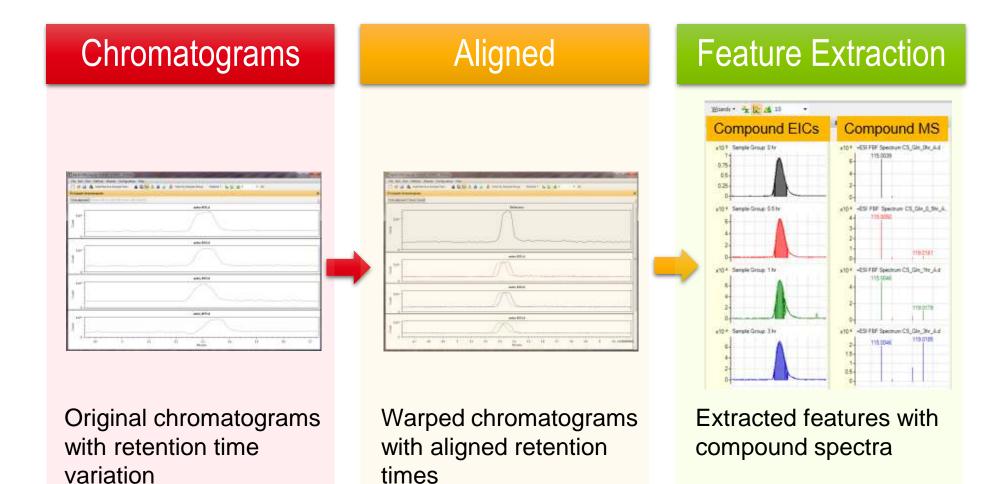
Recursive batch analysis minimizes false positives and negatives

Compound centric review and manual editing

• Use extra MFE

Create

Batch

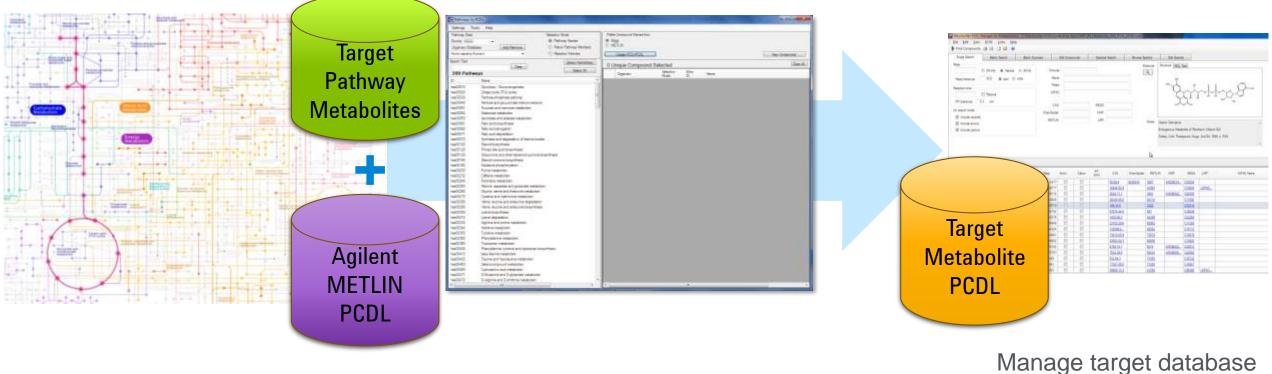

Untargeted

MFE

• Use compiled list for targeted feature extraction of each data file in batch

MassHunter Profinder B.08.00 SP3 Chromatowarping for CE/MS & LC/MS

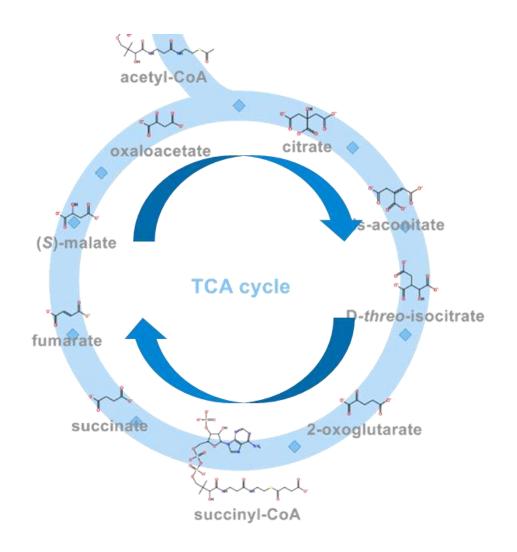
PCDL Manager and ID Browser 8.0 IM and MS/MS Library Support


Single Search Batch Search	Batch Summary	E	dt Compound	6 3	Spectral Search	Browse Spectra	Edit Spectra				
855						Molecule	E Stucture MOL Text	nter ID Browser 8.08.00			active and a second
(M+H)+ () Net	(H-M) () (and	Formula	1			Q		Identification Method Configuration	5 Help		
105 10 000	0 #0#	Nane	-				00	• (*) Run ID Wizard 11 Ht	8 4 3		
fess tolerance: 10/0 🗰 ppri	0.000	Notes	-			-	HE /	ce Results: Cod 6: Sultadimethoxine: C12		223 min) >	A Structure Viewer: Sultadimethou
tention time			_			-		(I) 14	m/z / 🗣 Abund 🗣 Abund % (Norm) 🗣	₽Z 19 Sat 19 Species 19	L Stucture MOL Test
Require		NUPAC:						Contraction of the second s	1 311.0807 813951.69	1 (M+H)+	NEW CONTRACTOR
RT tolerance: 0.1 min							0 0 0	4FE Spectrum (rt: 1.223 min) 311.0807	312.0839 129210.52	1 (M+H)+	
and a second		CAS						0-330707	313.0801 49750 17 314.0807 6754.44	1 (M+H)+ 1 (M+H)+	_
search mode		Chem Spider:					oła	1 2	314.0807 6754.44 43.1363 315.0816 894.12	1 (M+H)+ 1 (M+H)+	-
include neutrals						1000	1		333.0533 290554.25	1 (M+Na)+	-
						Notes	s Sinulart	MFE Spectrum (it: 1.223 mirt)	334.0659 44362.07	t (M+Na)+	
Include anions									2547,00042		
Create & n	nanage	e cu	sto	m				311.0607	335.0616 15914.5 3136.0632 2592.8 349.0365 8460.57	1 (M+Ns)+ 1 (M+Ns)+ 1 (M+K)+	~40
Create & n	Ŭ			m				311.0807 , 1 643 thoxine C12H14N4D45 + Product Ion Fra	335.0616 15914.5 136.0632 2592.8 349.0365 8460.57 350.0424 1035.43 90-15 351.0332 958.9	1 (M+Na)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+	-510
	Ŭ			m				311.0807	43 1363 335.0616 15914.5 336.0632 2592.8 349.0365 8460.57 350.0424 1035.43	1 (M+Na)+ 1 (M+K)+ 1 (M+K)+	30
Create & n database a	Ŭ	rary		m				311.0807 , 1 643 thoxine C12H14N4D45 + Product Ion Fra	43 1363 43 1363 336 0632 2592 8 349 0365 8460 57 350 0424 1035 43 ag=15. 351 0332 958.9 643 1363 40159 54	1 (M+Na)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+	-310
Create & n	and libr	rary	- 10 hitti		RT (min) CAS	ChenSpider	IUPAC Neese	311.0807 +	335.0616 15914.5 336.0616 15914.5 349.0365 8460.57 350.0424 1005.43 361.0332 958.9 643.1363 40159.54 644.1383 12386.58 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+Ka)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	-5+0
Create & n database a Pert Copy in Summary Format Compound Name	and libr	r <mark>ary</mark>	- 10 hitti		RT (min) CAS 103-60-2		IUPAC Name N-(4-h)droxybery(sostamde	311.0807 +	335.0616 15914.5 336.0616 15914.5 349.0365 8460.57 350.0424 1005.43 361.0332 958.9 643.1363 40159.54 644.1383 12386.58 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+Ka)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	-540
Create & n database a Pert/Copy in Summary Format Compound Name Rotammophen	and libr	n <mark>ary</mark> h Results	- 10 hitti	Cation 1	and the second se	1905		311.0807 1 643 thoxine C12H14N4D45 + Product Ion Fra 311.0809 0768 200 300 Counts vs. Mt suits: Spectral	335.0616 15914.5 336.0632 2592.8 349.0365 8460.57 350.0424 1035.43 39-15 351.032 643.1363 40159.54 644.1383 12386.88 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+Ka)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	
Create & n database a	and libr	nary h Renalter Meis 151.05333	- 10 hitti	Cation 1	103-90-2	1905 2424	N-(4-Hydroxyphery(jacetamde	311.0807 1 64 thoxine C12H14N4D45 + Product Ion Fra 311.0809 0768 200 300 Counts vs. Mt suits Spectral databa	335.0616 15914.5 336.0632 2592.8 349.0365 8460.57 350.0424 1035.43 39-15 351.032 643.1363 40159.54 644.1383 12386.88 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+Ka)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	-5+0
Create & n database a Prot/Copy in Summary Format Compound Name Acatamingchen Daffeine Lidicatine	and libr	Cary Meis 151.06333 194.08038	10 hits Anion	Cation #	<u>103-90-2</u> 50-09-2	1505 2424 3548	N-14 Hydroopherylacatamde 1,3,7 Trimathyl-3,7 dhydro-1H puthe-2,6 dione	311.0807 1 543 thoxine C12H14N4D45 + Product Ion Fra 311.0809 0768 200 300 Counts vs. Me sults Spectral Label ⊽+P New databa	335.0616 15914.5 336.0616 15914.5 349.0365 8460.57 350.0424 1005.43 361.0332 958.9 643.1363 40159.54 644.1383 12386.58 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	v ≠ Diff (MFG, ppm) V ≠ Diff (MFG, mC
Create & n database a Prot/Copy in Summary Format Compound Name Acatamingchen Daffeine Lidecame Sabuterol	Single Search Formula CSH9N02 CSH9N02 CSH10Na62 C14H22N20	Cary Meis 151.05333 194.08038 234.17321 239.15214	10 hits	Cation 1	103-90-2 58.08-2 137-58-6	1905 2425 3543 9 1899	N-(4 Hydroxyblerylisostamde 1,2,7 Timethyl 3,7 dhydro 1H juurie 2,6 diore N-2,5 Direthylpheryl - N^2 N-2 * - diethylghon	311.0607 1 643 thoxine C12H14N4D45 + Product Ion Fra 311.0609 0768 200 300 Counts vs. Me suits Spectral abel ⊽+P Nee Cpt 1:0.294	335.0616 15914.5 336.0632 2592.8 349.0365 8460.57 350.0424 1035.43 391.053 40159.54 643.1363 40159.54 644.1383 12386.88 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	v ≠ Diff (MFG, ppm) V ≠ Diff (MFG, m0
Create & n database a Pert-Copy in Summary Format Compound Name Kostammophen Laffeine Laffeine Laffeine Sabuterol Sabuterol Sabuterol	Single Search Formula CSH9N02 CSH9N02 CSH9N02 C14H22N20 C13H27N03	Cary Mess 151.05333 194.08038 234.17321 239.15214 2 270.02452	10 hits Anion	Cation 1	103-90-2 59-09-2 137-58-5 18559-94	1905 2424 3543 9 1999 5137	N-(4-Hydroophery/Sostamde 1.2,77methyl-3,7dhydro-1Hputhe-2,8-done N-(2,6-Dirrethylphery)/N*2*.N*2*-dethylghan 2-(Hydrooynathyl)+4 (1+ydrooy-2)(2methyl-2pro	311.0807 1 643 thoxine C12H14N4D45 + Product Ion Fra 311.0809 0768 200 300 Counts vs. M suits Spectral Label V + Na Cpf 1 0.294 Cpf 2 0.325	335.0616 15914.5 336.0632 2592.8 349.0365 8460.57 350.0424 1005.43 351.0332 958.9 643.1363 40159.54 644.1383 12386.58 644.1382 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	v + Diff (MFG, ppm) V + Diff (MFG, m0
Create & n database a database a database a database corpound Name kotammophen datan docame sabuteol sabuteol sabuteol sabuteol sabuteol sabuteol sabuteol sabuteol	and libr Single Searc Formale C8H9N02 C8H9N02 C14H22H20 C14H22H20 C14H22H20 C14H27H203 C9H10M402253	Nets 151.05333 194.08038 234.17321 239.15214 2 270.02452 5 278.08375	10 hits Avion	Cation f ET I	103-90-2 59-09-2 107-58-5 19559-54 <u>144-52-1</u>	1305 2424 3548 9 1899 5137 5135	N (4 Hydroopherylacatamde 1.2,7 Timethyl 3,7 dhydro 1 Hputhe 2,8 dione N (2,6 Dinethylpheryl) N° 2°, N° 2° dethylghan 2 (Hydroopnethyl) 4 (1 hydroop 2) (2 methyl 2 po 4 Anino N (5 methyl 1,3,4 Hiadacol 2 ylbenzene 4 Anino N (4,6 dinethyl 2 pymidryl) benzeneauf	311.0807 4 54 thoxine C12H14N4D45 + Product Ion Fra 311.0809 0768 200 300 Counts vs. Mr suits Spectral Label V + Nav Cpf 1 0.294 Cpf 2 0.326 Cod 20 514	335.0616 15914.5 336.0632 2592.8 349.0365 8460.57 350.0424 1035.43 391.053 40159.54 643.1363 40159.54 644.1383 12386.88 645.1342 5761.27	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	
Create & n database a Pert/Copy in Summary Format Compound Name Acetaminachen Catterine	Eand libr Single Searc Formula CBH9N02 CBH10N402 C14H22H20 C13H21N03 C3H10N40253 C13H14N4025	Cary h Results 151.05333 194.08008 234.17321 229.15214 2 270.02452 5 278.08175 5 284.01347	10 hits Anion 13 13 13 13 13 13 13 13 13 13 13 13 13	Cation 1	103-90-2 58-08-2 137-58-6 19559-94 <u>144-82-1</u> 57-69-1	1505 2424 3543 9 1509 5137 5138 5352	N-(4H)droophery(Sostamde 1.2,7Tmethyl-3,7dhydro-1Hputhe-2,8-dione N-(2,6-Dmethylphery)/N*2*.N*2*dethylghan 2-(Hydroopmethyl)-4 (Thydroop-2)(2methyl-2po- 4-Amno-N-(5methyl-1,3,4Hiadaos)-2y(Densere	311.0807 4 54 thoxine C12H14N4D45 + Product Ion Fra 311.0809 0768 200 300 Counts vs. Mr suits Spectral Label V + Nas Cpf 1 0.294 Cpf 2 0.325 Cpf 2 0.325 Cpf 4 0.783	335.0616 15914.5 335.0616 15914.5 335.0622 2592.8 349.0365 8460.57 350.0424 1059.43 351.0332 958.9 644.1383 12386.58 </td <td>1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+</td> <td></td>	1 (M+Na)+ 1 (M+Ka)+ 1 (M+K)+ 1 (M+K)+ 1 (M+K)+ 1 (2M+Na)+ 1 (2M+Na)+ 1 (2M+Na)+	

Pathway-directed Metabolomics: Create a Target Metabolite Database Pathways to PCDL and PCDL Manager

Use Pathways to PCDL to specify pathway(s) for target database optionally including information from Agilent METLIN

in PCDL Manager

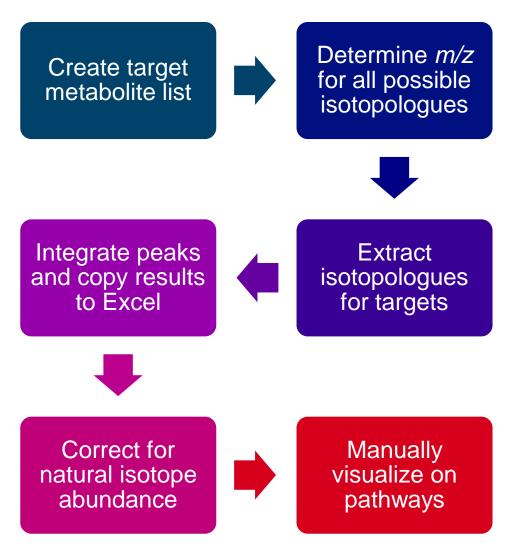

Stable Isotope Tracing

Qualitative flux analysis

Metabolomics provides static information on cellular molecular composition

Qualitative flux analysis reveals *in vivo* pathway activity

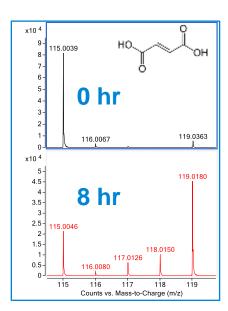
Qualitative flux analysis tracks the flow of metabolites through a pathway

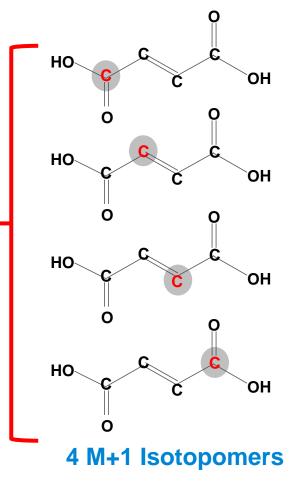


Stable Isotope Tracing for Qualitative Flux Analysis Manual Process

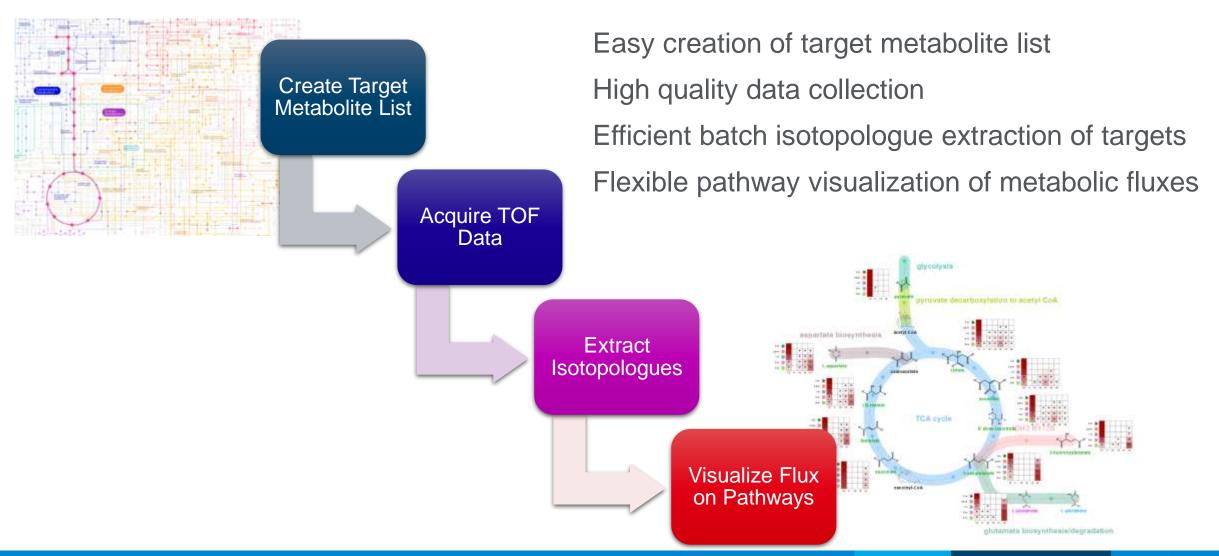
Multi-step manual process is

- Tedious
- Error-prone
- Time-consuming


This limits the number of compounds analyzed!


VistaFlux Stable Isotope Tracing Isotopologue tracking

Use of stable isotope labels (¹³C, ¹⁵N, and ²H) Monitor stable isotope incorporation


Fumarate C₄H₄O₄

Isotopologues $M+0: {}^{13}C_0C_4H_4O_4$ $M+1: {}^{13}C_1C_3H_4O_4$ $M+2: {}^{13}C_2C_2H_4O_4$ $M+3: {}^{13}C_3C_1H_4O_4$ $M+4: {}^{13}C_4C_0H_4O_4$

Stable Isotope Tracing Using MassHunter VistaFlux Agilent VistaFlux workflow

Metabolomics dMRM Database and Analytical Method

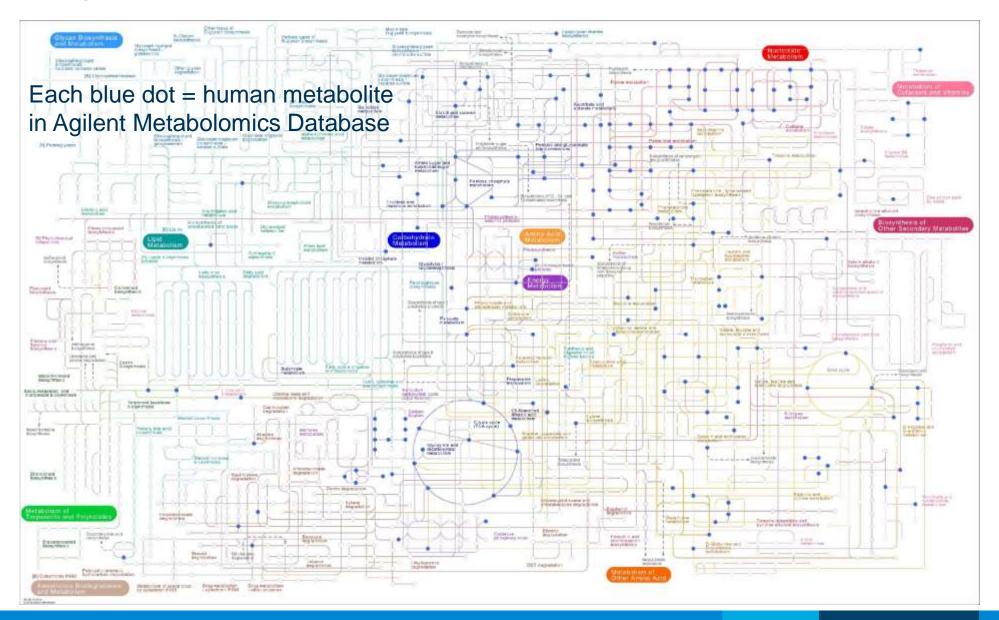
Routine analysis of central carbon pathway metabolites

What is it?


- An optimized LC/MS database and analytical method for 219 central carbon metabolites
- Designed for 1290 Flex pump and 6460/6470 QQQ LC/MS Systems
- Provides an optimized method and database with stable, robust chromatography

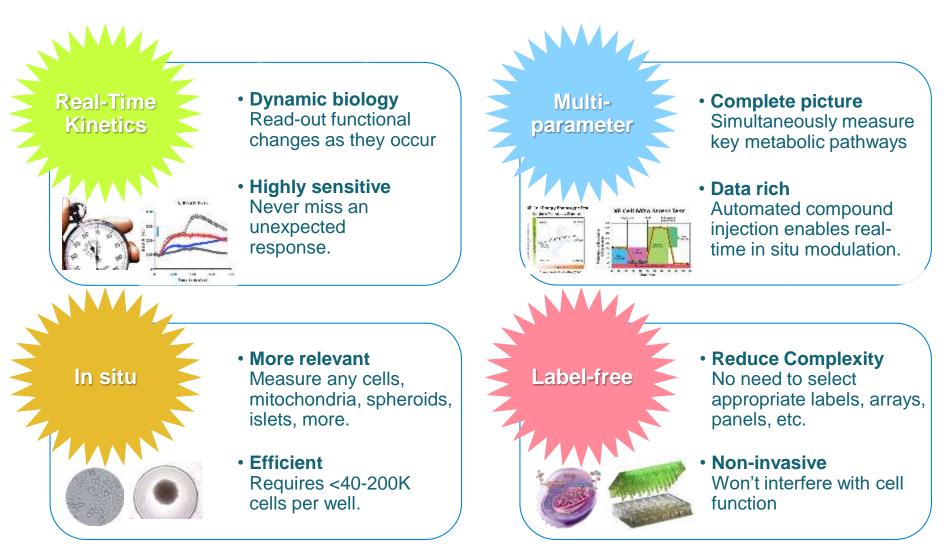
Why develop an analytical method for central carbon metabolism?

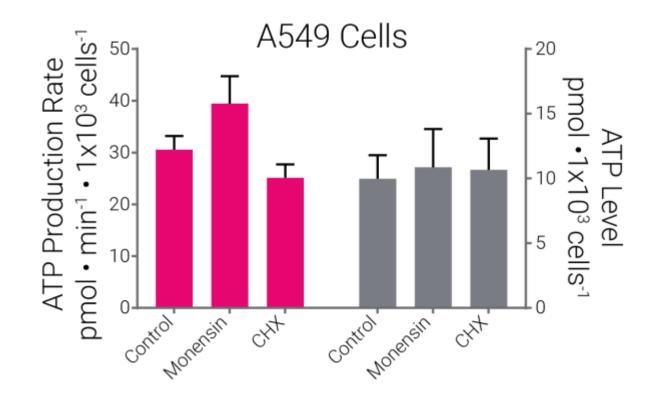
Central carbon metabolism is associated with energy metabolism and synthesis of important metabolites


Why develop a targeted analytical method for LC/QQQ?

- Easy, sensitive, robust and routine analysis with simplified data analysis (compared to discovery metabolomics)
- Low cost of operation and low capital cost

KEGG Map of Human Metabolites in Database

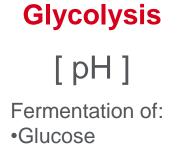

XF Technology Empowers You to Answer Your Questions About Cellular Function in Real-time

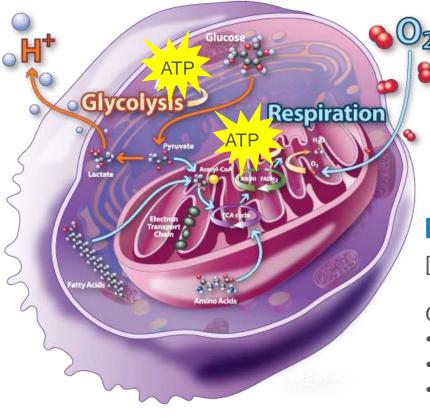


Seahorse XF Assays Go Beyond What Cells Are to Reveal What They Are Doing

XF Real-Time ATP Rate Assay Uncovers Cellular ATP Demand that is missed by ATP Level Assay

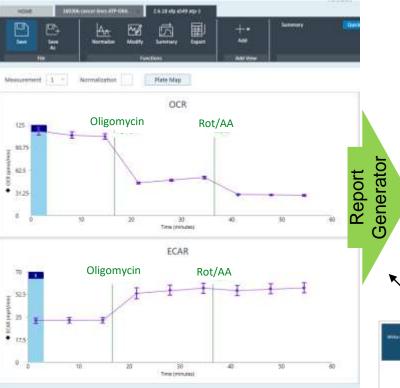
Changes in ATP Production Rate correlate with changes in cellular activity.


More informative than measurements of intracellular ATP level for monitoring dynamics of cellular function.


Monensin: increases ATP demand due to increase in Na+ import and Na+/K+ ATPase activity

Cycloheximide: decreases ATP demand due to inhibition of protein synthesis

How is ATP Production Rate Measured?


Respiration

[Oxygen]

Oxidation of: •Glucose •Fatty Acids •Amino Acids

How is ATP Production Rate Measured?

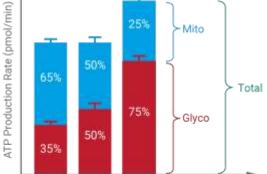
mitoATP Production Rate

+

glycoATP Production Rate

Total ATP Production Rate

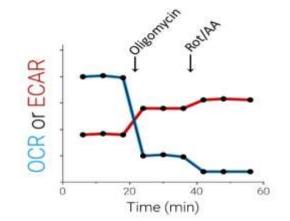
Quantifying Cellular ATP Production Rate Using Agilent Seahorse XF Technology

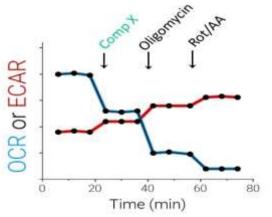

Angelener Angelener Angelener

Appropriate Contractions of the

Absoriet

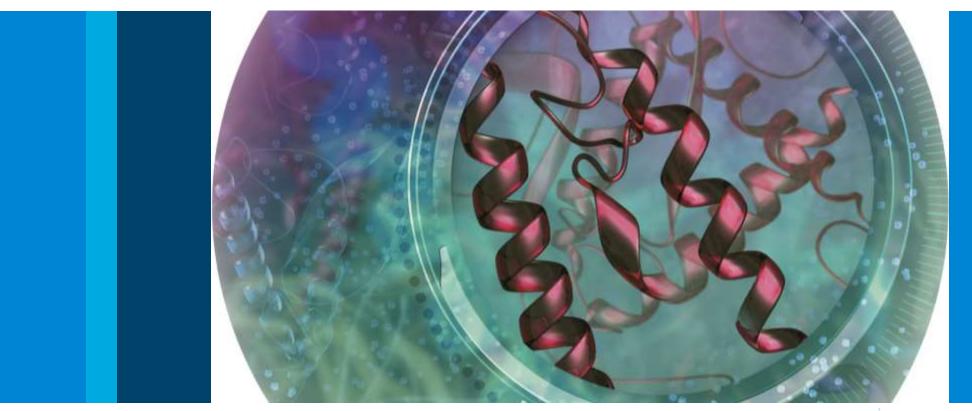
a) a relative spectral part of parts (space in the part of parts of part




Assay Design

Standard XF Real-Time ATP Rate Assay

- To quantify metabolic phenotype of a cell type, to compare different cell types, genetic modifications, pre-treatments with compounds
- Outputs:
 - Basal mitoATP, glycoATP, total ATP rates
 - ATP Rate Index


Induced XF Real-Time ATP Rate Assay

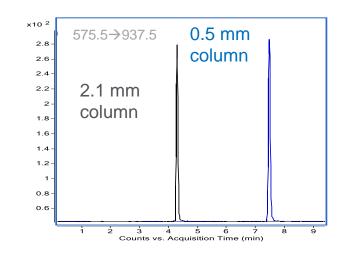
- To study acute effect of compounds, compounds effect over time, mitotoxicity, metabolic switch or pathway liabilities induced by compounds
- Outputs:
 - <u>Basal</u> AND <u>Induced</u> (post-treatment) mitoATP, glycoATP, total ATP rates
 - Basal and Induced ATP Rate Index

Proteomics Workflows

Agilent Instrumentation For Proteomics

Agilent Jet Stream Ion Source

Superior to capillary LC

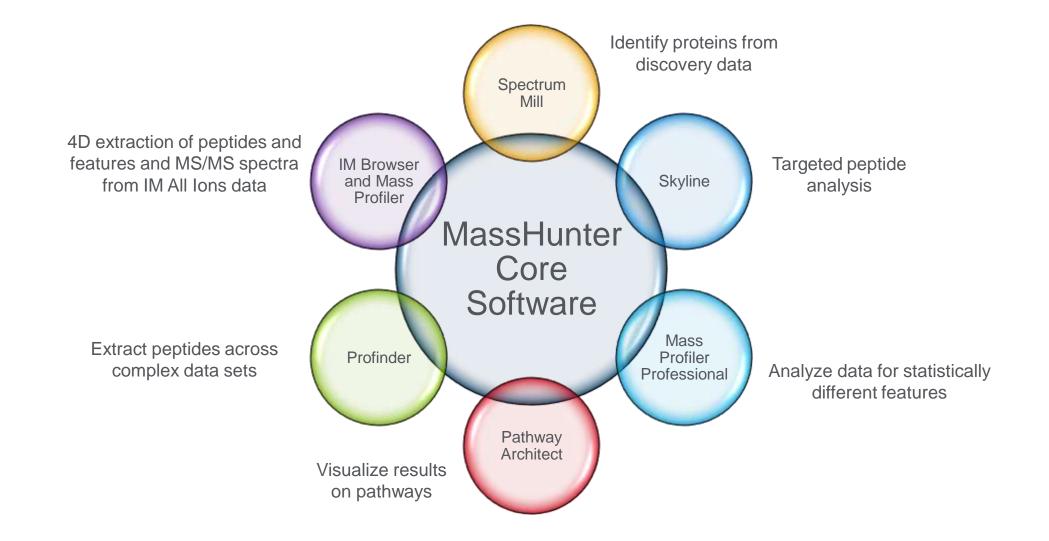

Jet Stream provides 3-5x signal increase compared to ESI

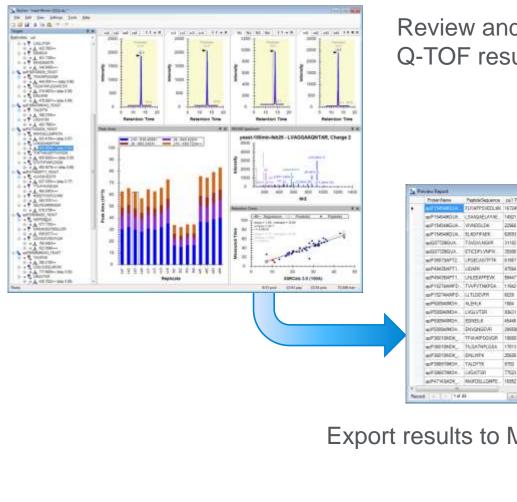
Agilent Jet Stream showed same signal (and LOD) for

- + 2.1 mm ID column at 400 $\mu L/min$
- + 0.5 mm ID column at 17 $\mu L/min$

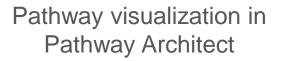
Agilent Jet Stream is not concentration dependent like ESI

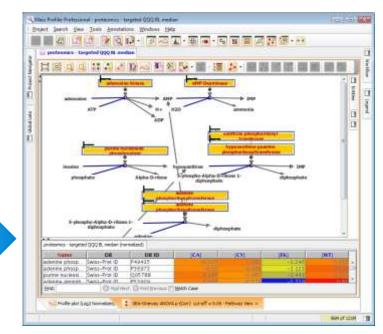
- Analytical sensitivity depends on absolute amount (mass) of analyte in source not concentration of analyte in droplet
- Published results for small molecules: Buckenmaier S, Miller CA, van de Goor T, Dittmann MM. J Chromatogr. A 2015, 1377:64-74.



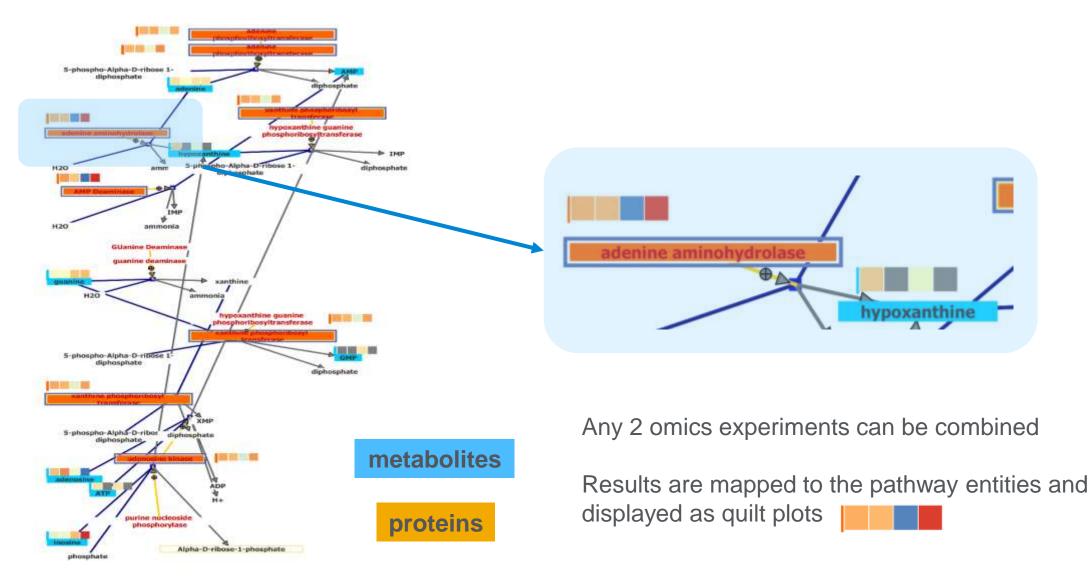


Agilent Proteomics Application Software

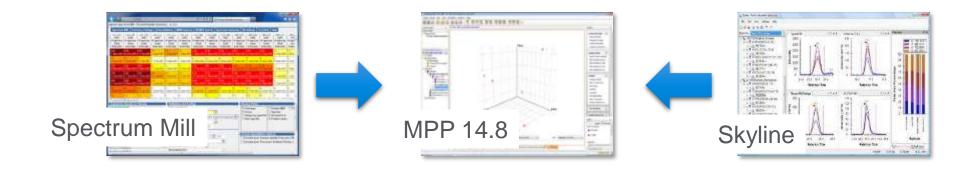

Targeted Proteomics Workflows From Skyline to MPP



Review and process QQQ or Q-TOF results in Skyline


	Proper/Name	PathokGeplance	287 Total-Press	rs2 Tidelives	coll Tetalives	ta-4 Total/vest	0.1
	NOTIFICATION.	10/m/h2/morak	167245	18581	360872	175425	21
	mP1549480UR	LISANGAELANNE	14921	16087	19017	14758	11
	wP15db8GLA	WVNDDLDK	20968	23567	23214	211:30	11
	m#15454801A	ELKO/FACE	62631	777786	67507	61420	1
	#40077780AJA	TOVENAMER	31140	26479	31938	31316	12,
	#00772903/A	ETCOPLYMPIN -	20100	40673	33104	36104:	4
	wPHEOWITZ.	LPSECAD/TFTR	0.1590.1	117912	817:8	60833	13
	aprends4911	SHPTI LIDAPI (2004		80054	1003584	100601	-
	mP456384*11	UNITERATEVE	59447	110625	10,2388	110717	12
	wP1UTan/#D.	TVAFYTHEFER	11943	11788	13142	54762	10
	wP15214WAPD	LLTLOGVIN.	1029	E38	6390	0014	15
	ePitteM3+	ALDER.K.	1904	2130	21/9	1903	tt
	ar/7003HiM0+	LINGLY TER	30677	31481	30475	\$1540	31
-	wPeaseMon.	CONDLA.	45445	49082	44224	42356	4
	w/95056M0+	DIVERSEVE .	2965801	10201518	\$21505e	2115265	37
	mP36013ACK_	TFW/R0100V0R	100001	185785	100809	100334	21
	wPHOTONCH_	TRUEATOPODEA.	1000	199625	999.71	16380	28
	w/36010hEk	DUNES	25638	20242	24513	26428	1
	#FINTINGE	TADER	8.00	10522	10004	2244	-
	#P39973M0=	JuGelTSR	77623	74102	76145	20560	
	mP47143408	MOTOBLICHTE .	18052	14155	15400	11014	38-
							4
	14	44	Martine The				

Export results to MPP



Multi-omics Pathway Visualization of Results

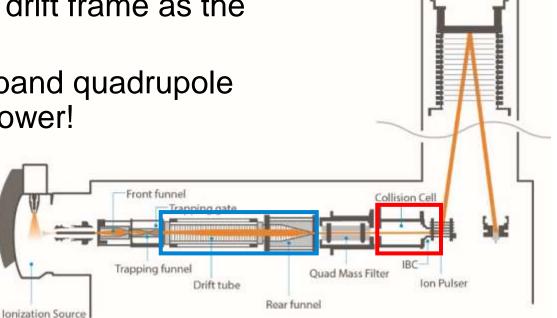
MPP Proteomics Analysis Enabling Protein and Peptide Level Analysis

- Imports protein and peptide-level information from Spectrum Mill or Skyline
- Filters available for peptide-level and protein-level (abundance, frequency, PTMs)
- Protein/Peptide Entity Inspector for visualizing results

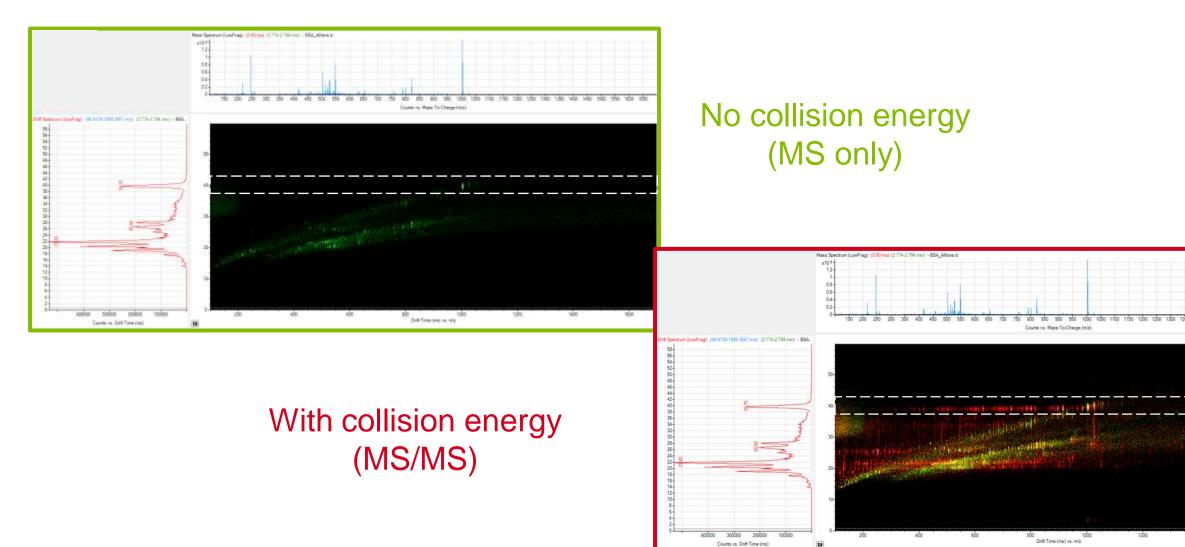
Enhanced Proteomics Workflow in MPP *Filter, Analyze and Visualize at Protein and Peptide Levels*

R Filter on Proteins			×				
Filter on proteins Select an entry lat and interpretation to filter proteins based on f To apply the filter, click on Preview button.	represented tes en rentry lat and integrations is filter pottents based on Prequency, Sample Vanishity, Advindance, Modifications, Poptific Court, Score, and Properties integration integration int						
Entity List Fold change >= 2.0	Q10096	Displaying 324 out of 319 proteins where 1 out of 2 conditions have Coefficient of variation -					
Interpretation Group (Non-everaged)	O'cose		Rilter on Peptides				×
Frequency Sample Variability Abundance ModiScators Pept	tide Count Score Properties		Filter on peptides				
Filter by Sample Variability		22 -		etation to filter oeo	ides based on	Frequency, Si	ample
Data to filter on			Variability, Abundance, Modific	ations, Charge, and			
		1900 21-	To apply the filter, click on Prev	lew button.		2552	
Range of Interest		20-	Entity List	All Entities		Choose	÷ []
			Interpretation	Group (Non-avera	iged)	Choose	e I
		Ar 19-	Frequency Sample Variability Ab	Indance Modifica	tions Charg	e Properties	1
	reliced Data d Drivenest efficient of variation < 28 % efficient of variation < 28 % efficient of variation < 28 % enderd deviation < 16 inderd error < 03 relien proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range their proteins in which at least 1 out of 2 conditions have values within range						
◯ Standard error < 0.3		4 200			ane		
O Standard error a 0.5			Retain peptides with atleast one of t	he selected modification	Allowed	Disali	owed
Retain proteins in which at least 1 out of 2 conditions ?	nave values within range	16	Oxidized Methionine		0	۲	
			Pyroglutamic acid(only at N-terr	ninus of peptide)	0	۲	
			Phosphorylated Threonine	peptides In entity list and interpretation to filter peptides based on Frequency, Sample ty, Abundance, Modifications, Charge, and Properties. y the filter, click on Preview button. Entity List All Entities Interpretation Group (Non-averaged) Sample Variability Abundance Modifications Charge es with atleast one of the selected modifications Disallowed I Methionine Image: All Entities amic acid(only at N-terminus of peptide) Image: All Entities avidated Threonine Image: All Entities avidated Serine Image: All Entities avidated Tyrosine Image: All Entities avidated Tyrosine Image: All Entities			
Comrei Comrei Croup dion-averaged		Deamidated Asparagine		0	۲		
Filter on peptides by			Phosphorylated Serine		۲	0	
• PTN	Лs		Phosphorylated Tyrosine		۲	0	
• 500		Select/Deselect all modifications	1				
	•		Include corresponding unmodifi	ed peptide			
Image of Internation Image of Internation						P	review
Stat	tistical ar	nd correlation analysis			1		
Old		ia contonation analytito	Help			96	Cancel

Proteomics Visualizations in MPP Display Both Protein and Peptide Information

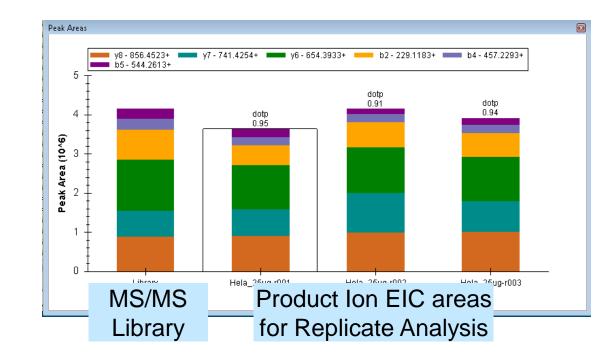

Protein	Prote	ein Name		Swiss-Prot ID	Specie	s			
Q13492				013492 060641	HUMAN		8		
P78344				P78344	HUMAN	100			
Q03135	Caveolin-1			P56539 003135	HUMAN	1			
P68400	Casein kinase II subunit a	lpha		P68400	HUMAN	- 6			
Q15427	Splicing factor 3B subunit			015427	HUMAN				
P28340	DNA polymerase delta catalytic subunit Mitochondrial import receptor subunit TOM70 Pyridoxine-5'-phosphate oxidase			and the second part of the secon	HUMAN				
				and the second se	the second state of the loss of the loss	-			×
094826				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HUMAN HUMAN		2555 10022644	이 같은 것 같은	-
Q9NVS9				<u>Q9NVS9</u>			interpretation	 Refer the visualization plot to review and compare the abundance of peptides in samples/conditions. 	
Q9HCY8	Protein S100-A14	<u>O9HCY8</u>	HUMAN	~	·		-		
Find: 00313	5 Find Next	Pr			Select interpretation Group (Non-everaged)				
					Protein Nan	me Frequency			
		003135			Caveolin-1				4
									-
		Bridt O Figd Next: O Find Br							
		Peptides			1017 - 000 - 1481 - 1			Resident Perflected and an and a second state of the second state of the second state of the second state of the	_
		Peptide	Charge Freq	vency Alt. Accession	Vmod	Mod	Mass	Peptides: Profile plot Peptides: BoxWhisker plot Protein: Profile plot Protein: BoxWhisker plot	
		AMADELSEK 2+	2	4			993.456		
		EDUVNEDEK 2+	10 2	3 P56539	10		1,198.643		
		HLNDD/VK 2+ IDFEDVIAEPEGTHSF	2	1			939.489 2,405.13		
		IFSNVR 2+	2			_	735.415	I L NO-S NODE IN	
		YVDSEGHLYTVPIR 3+	3	4			1,648.833		
		EDUVISION 3+	3	2 956539			1, 198, 643		
		qVYDAHTK 2+	2	2	Q40a qsPyrog	lutamic acid	961.474	5 4000	
								A A DOUD DOUD DOUD DOUD DOUD	
								義 3000	
								2000	
								2000	
		EIDLYNRDPK 2+ Attributes						1000	
		~ Sample	Flag	Raw Abundance	Chi2	1	PIP		
		C1 C2		178,715	-	1	55.9		
		T1	P	102,668		0.99	62.3		
		72	p	135,962		1	71.8		
			50.	I Antohora	h.		110,000		
		-						Group (hion-averaged)	
		Help						OK Can	cel .

Agilent IM All Ions MS/MS for Proteomics


Drift separation instead of quadrupole isolation

- All ions entering the collision cell are subjected to fragmentation voltage
- Fragment ions will be in the same drift frame as the precursor
- Better duty cycle compared to wide-band quadrupole isolation with equivalent resolution power!

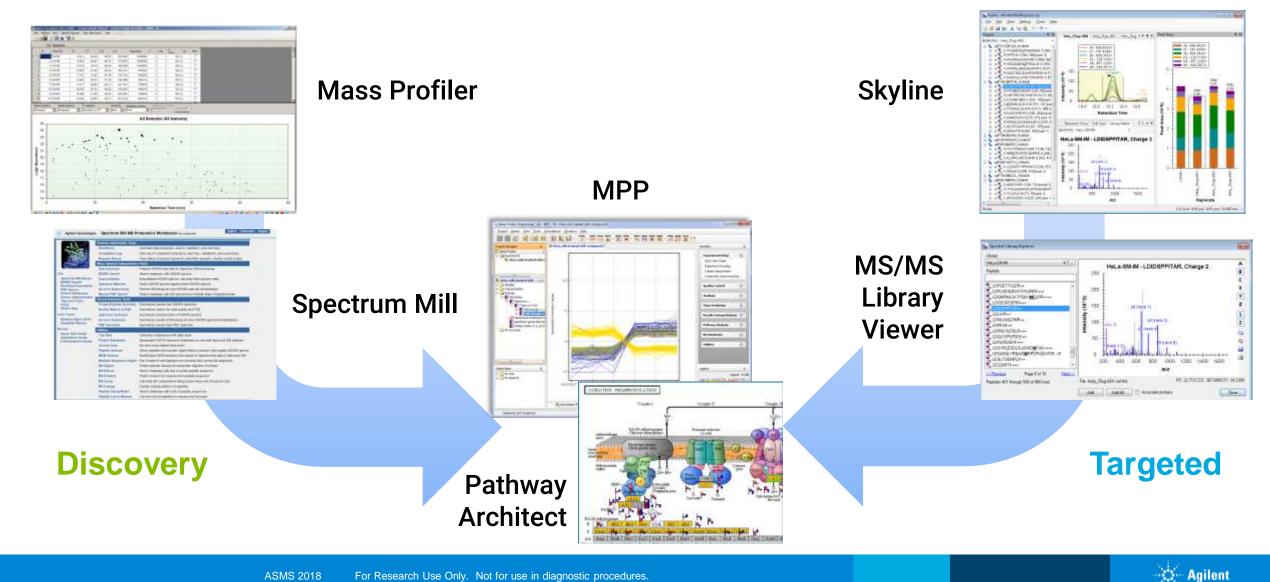
IM All Ions MS/MS Acquisition for Proteomics Alternates between no collision energy and collision energy

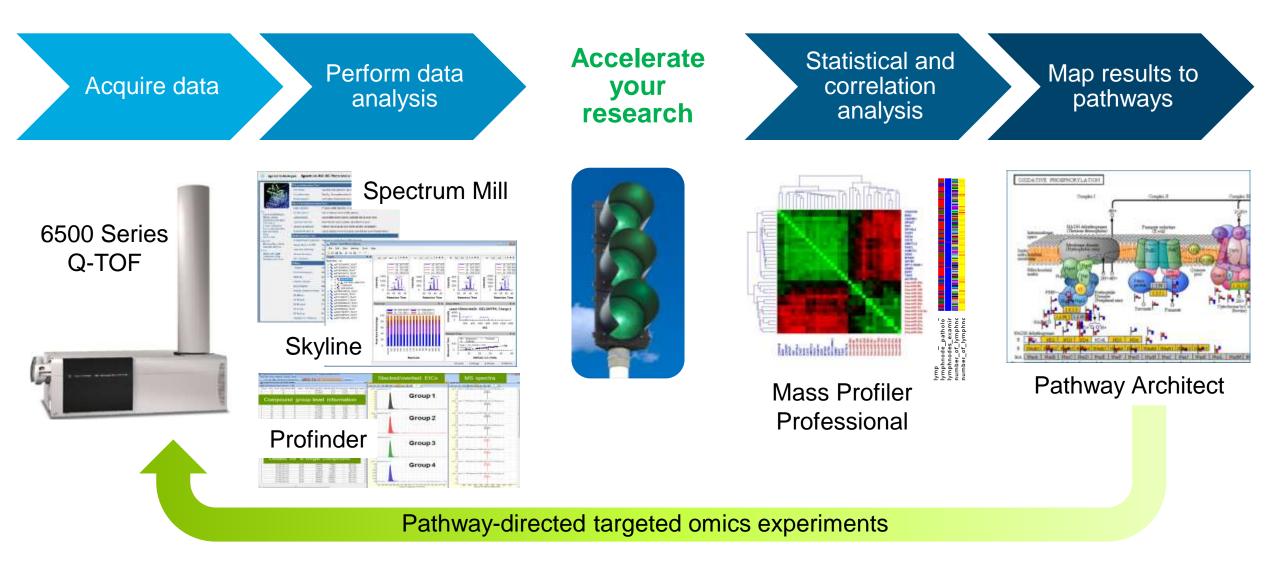


IM All Ions MS/MS for Proteomics Reproducible MS/MS Results

No precursor isolation so product ions always produced

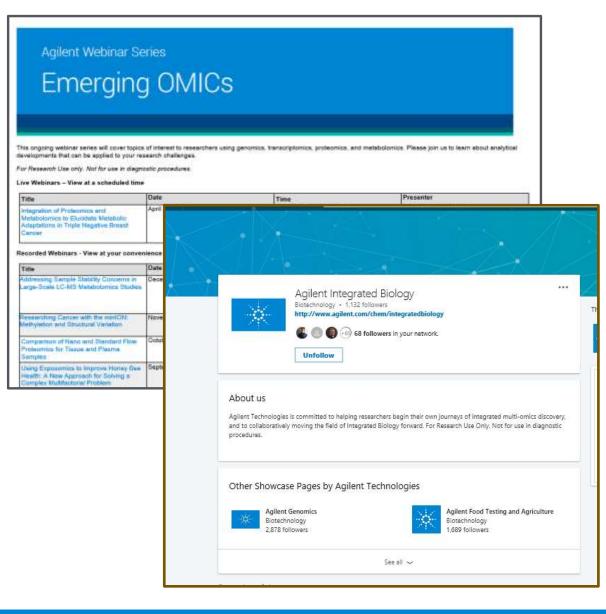
Fast cycle time compared to wide-band isolation


More points across chromatographic peak yields better reproducibility



Ion Mobility Proteomics Workflows

Discovery and targeted analysis



Accelerate Your Research With a Complete Pathway Centric Workflow

Latest Information From Agilent

Quarterly Omics eSeminar Series

http://www.agilent.com/en-us/trainingevents/eseminars/emerging-omics

LinkedIn Agilent Integrated Biology page

https://www.linkedin.com/company/a gilent-integratedbiology?trk=rr_brands_carousel_logo

Questions

