A workflow for identification of isobaric isoforms of glycans using off-line MALDI-MS system

Global Applications Development Center, Shimadzu

A workflow for identification of isobaric isoforms of glycans using off-line MALDI-MSn system

Introduction

Analysis of glycosylation is one of the indispensable approaches for a development of antibody-drug and biomarker discovery, because a large number of proteins in eukaryotes are glycosylated and they play various roles in physiological function like a molecular recognizing. Therefore, a well-established workflow for characterization of glycosylation has been a one of the growing demands.

The author and co-workers has reported a system for identification of glycan structures using an observational MS ${ }^{n}$ spectral library obtained by MALDI-QIT-TOF MS ${ }^{11)}$, 2). In this study, we will demonstrate a practical workflow combined with the spectral library and off-line separation system for the glycan structure characterization.

Fluorescent labeled glycan mixture

$2^{\text {nd }}$ step
An aliquot of the remaining sample is provided to a nano HPLC and eluted glycans are automatically fractionated onto a MALDI plate. A MS spectrum is generated for each fraction, and the intensity maps of the mass values which were listed in the 1st step are created.

${ }^{\text {st }}$ step

Small aliquot of a glycan sample is subjected to MALDI MS analysis, a list of candidate precursor ions is generated by the "Accurate Glycan Analyzer 2 (AGA2)".

Analysis of N -glycans released from human myeloma IgG and human erythropoietin-a

To identify proteins associated with insulin resistance in adipocytes in vitro, differential proteome analysis using the NBS method was performed in 3T3-L1 adipocytes in which insulin resistance was induced by TNF-alpha or
dexamethasone (Fig. 2a). The relative quantification and the identification of differentially expressed proteins were performed using LC-MALDI-TOF MS (Fig. 1b and 2a).

1) Preparation of N -glycans

Human myeloma IgG (Carbiochem) was separated by 1D SDS-PAGE and treated with N -glycosidase (Takara Bio Inc.) in gel. On the other hand, Human erythropoietin-a (Carbiochem) was treated with N -glycosidase in solution.

Released N -glycans were pyridylaminated. Additionally, sialic acids of N -glycans from IgG were methylesterified, and N -glycans from erythropoietin were desialylated.
II) MS analysis of each sample and detection of candidate N-glycans by AGA2

7, 7, and 11 signals were generated from MS analysis of the methylesterified N-glycans of IgG heavy chain, light chain, and desialylated N-glycans of erythropoietin by AGA2, respectively.

A workflow for identification of isobaric isoforms of glycans using off-line MALDI-MSn system

III) Separation of isomers using nano HPLC

N -glycans were separated by the carbon column (Hypercarb KAPPA Capillary column, Length: 100 mm , ID 180um; Thermo scientific) under the linear gradient of 90% CH3CN solution containing 0.1% formic acid. The total flow rate of the nano HPLC was set at $1 \mathrm{uL} / \mathrm{min}$. Each
fraction was spotted onto a MALDI plate with the MALDI matrix solution ($2.5 \mathrm{mg} / \mathrm{mL}$ DHBA in $80 \% \mathrm{EtOH}$, containing $5 \mathrm{mM} \mathrm{NaCl})$. Separated N -glycans were detected by the Laser induced fluorescent detector (ZETALIF $2000 \mathrm{He} / \mathrm{Cd}$ Laser; Picometrics).

IV) Characterization of N -glycans by MS ${ }^{\mathrm{n}}$ analysis combined with AGA2

Myeloma IgG heavy chain

Myeloma IgG light chain

Erythropoietin-a

Fig. 3 Identification and functional analysis of novel adipokine

Conclusions

- We identified various glycan isomers using our workflow.
- Our workflow could be applicable to various areas of research where screening of glycans is required.

References

1) A. Kameyama et.al. Anal. Chem., 77, 4719-4725 (2005)
2) A. Kameyama et.al. J. Proteome. Res., 5, 808-814 (2006)
