Is 2D HPLC the Answer for You

Rita Steed LC Columns Application Engineer

Sue D'Antonio LC Instrument Application Engineer

August 26, 2021

2D-LC: What Is It and Why Use It

What is 2D-LC?

• The selective transfer of a fraction (or fractions) from one chromatographic column to a secondary chromatographic column for further separation

Why might you use it?

- Increase peak capacity
- To further resolve a complex mixture that's not well separated on a single column
- To identify all the impurities in your sample using an orthogonal technique
- To confirm that your main peak is pure
- For sample cleanup; to remove matrix or interfering compounds

Are you sure?

Peak capacity per 30 min

HPLC UHPLC 2D-LC

Avoid suprises and use full orthogonality to prove purity of compounds.

Resolve more compounds in highly complex samples.

In need for speed?

Substitute manual prefraction or sample desalting with online methods.

Are you sure?

Avoid suprises and use full orthogonality to prove purity of compounds.

Resolve more compounds in highly complex samples.

HPLC UHPLC 2D-LC

Lack of the full picture?

Peak capacity per 30 min

In need for speed?

Substitute manual prefraction or sample desalting with online methods.

Are you sure?

Avoid suprises and use full orthogonality to prove purity of compounds.

Resolve more compounds in highly complex samples.

HPLC UHPLC 2D-LC

Lack of the full picture?

Peak capacity per 30 min

In need for speed?

Substitute manual prefraction or sample desalting with online methods.

Resolution

For equal peak areas, R = 1.5 gives "baseline" separation.

What is Peak Capacity?

- The number of peaks that can be separated with defined resolution (e.g., Rs=1) in a certain time period for a given system (column length and particle size).
- Another measure of separation efficiency
- Especially useful for complex chromatograms

Peak Capacity Calculation of Peak Capacity

Equation for isocratic elution

$$P_{c} = 1 + \frac{\sqrt{N}}{4R_{s}} \ln[1+k_{last}]$$

Equation for gradient elution

$$P_{c} = 1 + \frac{t_{G}}{\frac{1}{n} \Sigma_{1}^{n} w}$$
$$= 1 + \frac{t_{G}}{w_{av}}$$

k_{last}: Retention factor for last peakN: Efficiency

R_s: Minimum required resolution

- P_c: Peak Capacity
- t_G: Gradient time
- W: Peak width

w is influenced by N N depends on column length and particle size

Peak Capacity can be Increased by Using...

...smaller particles.

Disadvantage: Heavily increased back pressure

...longer columns.

Disadvantage: Increased back pressure and run time

Or We Can Go to a Second Dimension

Schematic Representation of Peak Capacity

1st dimension separation ——

1st dimension separation

- Each block represents a unit of peak capacity
- Lined up in the same dimension

2nd dimension separation

Increases the number of blocks/units of capacity

What is 2D Chromatography

Adding orthogonal separation

2D-LC Separation Modes

(Multiple) Heart-Cutting 2D-LC (MHC 2D-LC)

Store one or multiple peaks of interest and further analyze in the second dimension.

Comprehensive 2D-LC (LCxLC)

Send the complete 1D efluent in equal portions to the second dimension and get the full picture.

High Resolution Sampling 2D-LC (HiRes 2D-LC)

Make multiple cuts across one peak of interest and compare results at different positions, for example, for reliable quantification.

2D-LC – Heart-cutting vs Comprehensive 2D-LC Heart-cutting 2D-LC (LCxLC)

Parts of the 1D effluent are injected onto the 2D system

Long 2D gradients possible \rightarrow good data quality

Limited 2D information

2D-LC –Comprehensive 2D-LC Comprehensive 2D-LC (LCxLC)

The whole 1D effluent is injected onto 2D system

(Ultra)Short 2D gradients necessary → Good data quality with fast pumps & detector

Full ("comprehensive") 2D information!

2D-LC –Comprehensive 2D-LC Comprehensive 2D-LC (LCxLC)

2D-LC – Comprehensive Data View

Taxanes from Taxus Extract Analysis of extract vs. standard sample

Full separation of all taxanes from interfering peaks

 Especially main peak of interest (Paclitaxel, #12); separation fully achieved

More robust separation of peaks compared to 1D separation

Application Note 5991-3576EN.pdf

Taxanes from Taxus Extract

Method optimization using shifted gradient

Apply

Ok Cancel

D. Li and O. J. Schmitz

"Use of Shift Gradient in the Second Dimension to Improve the Separation Space in Comprehensive Twodimensional Liquid Chromatography"

Advanced ²D pump settings

Anal. Bioanal. Chem. 405, 6511-6517 (2013)

Application: Components of Beer Samples

Analysis of two different commercially available Japanese beer samples with different separation modes

System:

1 st dim pump:	1260 Infinity Binary Pump
AutoSampler:	1290 Ininfity Autosampler
2 nd dim. pump:	1290 Infinity Binary Pump
TCC:	1290 Infinity Therm. Column Comp. w. 2D-LC valve
Detector:	1290 Infinity Diode-Array Detector G4212A,
Data acquisition:	OpenLAB ChemStation Edition w. 2D-LC Add-on
Data analysis:	LC image software from GC image LLC

Experiments	1st dimension	2nd dimension
1.	SEC	RP (C18)
2.	IEX	RP (C18)
3.	RP (C18)	RP (Phenyl)

Components of Beer Samples SEC - RP

Separation by SEC

Components of Beer Samples IEX - RP

1st dimension - Ion exchange 2nd dimension – Reverse phase (C18)

Separation by ion exchange

Components of Beer Samples RP - RP

1st dimension - Reverse phase (C18) 2nd dimension - Reverse phase (phenyl)

August 26, 2021 Is 2D HPLC the Answer for You DE44433.4275578704

Comprehensive 2D-LC

Peptide mapping of nonstressed and stressed mAbs

DIQMTQSP	1 T2 T3 T4 Slsasvgdr vtitcr asqdvntavawyqqkpgk apk	
T5 LLIYSASFLY	GGVPSR FSGSR SGTDFTLTISSLOPEDFATYYCOOHYTTPPTFGOGTK	ain (1
T8 T9 VEIK B	T10 T11 T12 T13 TVAAPSVEIEPPSDEOLK SGTASVVCLUNNEYPB FAK VOWK	it cha
VDNALQS	T14 T15 T16 T17 NSQESVTEQDSK DSTYSSTLTLSK ADYEK HK	Ligh
T	8 T19 T20 IGLSSPVTK SFNR GEC	
WGGDGF	T32 AMDYWGQGTLVTVSSASTK GPSVFPLAPSSK STSGGTAALGCLVK T35 SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTI	<
DYFPEPVT T36 T37 VDK K	T38 T39 T40 T41 VEPK SCDK THTCPPCPAPELLGGPSVFLFPPKPK DTLMISR	vy chá 1-449
DYFPEPVT T36 T37 VDK K TPEVTCVV	T38 T39 T40 T41 VEPK SCDK THTCPPCPAPELLGGPSVFLFPPKPK DTLMISR T42 T43 T44 T45 /DVSHEDPEVK FNWYVDGVEVHNAK TKPR EEQYNSTYR	Heavy chá A (1-449

Objectives

- Analysis of a tryptic digest of trastuzumab (herceptin)
- Use of HILICxRP for increased orthogonality

1D mode: HILIC

- Agilent ZORBAX RRHD 300-HILIC, 2.1 × 100 mm, 1.8 μm
- Flow: 50 µL/min
- Solvents: A:15 mM NH₄Formiate pH 4.5, B: 15 mM NH₄Formiate in 90% ACN, pH 4.5

2D mode: RP

- Agilent ZORBAX Eclipse Plus C18, 4.6 × 50 mm, 3.5 µm
- Solvents: A: H₂O+0.1% FA, B: ACN
- Flow: 4 mL/min

Read more here: Application note 5991-4530EN

Comprehensive 2D-LC

Peptide mapping of nonstressed and stressed mAbs, application note 5991-4530EN

Unmatched Multiple Heart-cutting 2D-LC Usability

Smart Valve-Loop Setup with 12 loops → 2D-LC valve + two 6/14 valves

Pre-aligned loop-valve kits, just add to the existing 2D-LC system

Online status monitoring

1290 Infinity 2D-LC Solution

Multiple Heart-cutting

1290 Infinity 2D-LC Solution – Scalability

Multiple Heart-cutting

Direct Analysis of In-process Oligonucleotides, application note 5991-9490EN

Nucleotide samples

Oligonucleotide resolution standard (p/n 5190-9028): 14 mer:

rCrArCrUrGrArArUrArCrCrArArU

17 mer: rUrCrArCrArCrUrGrArArUrArCrCrArArU

20 mer:

rUrCrArUrCrArCrArCrUrGrArArUrArCrCrArArU **21 mer:**

rGrUrCrArUrCrArCrArCrUrGrArArUrArCrCrArArU

RNA sample (RNA/2'-OMethyl mix; synthesized by Agilent NSAD):

5'-GuGcCaAcCuGaUgCaGcU-3', upper case: RNA, lower case: OMethyl

Objectives

- 1st dimension: Desalting of oligonucleotides samples
- 2nd dimension: Separation of oligonucleotides from impurities

1D method parameters

- Column: PLRP-S, 2.1 × 50 mm, 3 μm
- Gradient: Depending on sample
- Solvents: A: 50 mM NH4Ac, pH 7
- Flow: 0.4 mL/min

2D method parameters

- Column: AdvanceBio Oligonucleotide, 2.1 × 50 mm, 2.7 μm
- Solvent: 400 mM HFIP + 15 mM TEA in water; B: Solvent A/methanol (50:50 v:v)
- Flow: 0.4 mL/min, ASM Factor 5

Oligonucleotides in high salt conditions show lack of RP retention, application note 5991-9490EN

Multiple Heart Cutting

Analysis of mAb glycoforms using MHC 2D-LC, application note 5991-6673EN

Rituximab

Rituximab heavy chain

QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWV KQTPGRGLEWIGAIYPGNGDTSYNQKFKGKATLTADKS SSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWG AGTTVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLV KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS VVTVPSSSLGTQTYICNVNHKPSNTKVDKKAEPKSCDK THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Rituximab light chain

QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKP GSSPKPWIYATSNLASGVPVRFSGSGSGTSYSLTISRVE AEDAATYYCQQWTSNPPTFGGGTKLEIKRTVAAPSVFIF PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQ SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYA CEVTHQGLSSPVTKSFNRGEC

Objectives

- Compare Rituximab with biosimilars for possible variants with intact proteins
- Use 2D-LC technology to desalt after WCX separation to automate this workflow

1D mode: WCX

- Agilent Bio MAb, nonporous, 2.1 × 250 mm, 5 µm, PEEK
- 1260 Infinity II bio-inert pump (due to high salt concentrations)
- Salt gradient 0 to 200 mM NaCl in phosphate buffer pH 6.2

2D mode: RP

- AdvanceBio RP-mAb C4, 2.1 × 75 mm, 3.5 µm
- Solvent: A: $H_2O+5\%FA$, B: ACN+5%
- Flow: 1 mL/min

Multiple Heart Cutting

Analysis of mAb glycoforms using MHC

Multiple Heart Cutting

Analysis of mAb charge variants using MHC

High-Resolution Sampling

Quantification of co-eluting compounds in green tea, application note 5991-7637EN

Objectives

- 1st dimension: Separation of compounds in green tea
- 2nd dimension: Quantification of co-eluting compounds caffeine and (–)-epigallocatechin gallate

1D mode: RP

- Column: ZORBAX Eclipse Plus C18 RRHD, 2.1 x 100 mm, 1.8 µm
- Flow: 0.2 mL/min

2D mode: RP

- Column: ZORBAX Bonus-RP RRHD, 2.1 × 50 mm, 1.8 μm
- Solvent: Water/methanol (35/65) + 0.1 % FA (isocratic)
- Flow: 1 mL/min

High-Resolution Sampling

High-resolution sampling on Agilent 1290 Infinity II 2D-LC solution

High-Resolution Sampling

Quantification of four compounds of interest

Hardware Module flexibility

2. Dimension

Almost any Agilent pump or autosampler can be used in the 1st dimens Almost any detectors is supported A 1290 Infinity binary pump for the 2nd dimension is best.

1260 Infinity Binary

or Quaternary Pump

Column strategies for orthogonal 2D-LC separations

Part of the

InfinityLab

family

Agilent Column Portfolio

Column strategies for orthogonal 2D-LC separations

Part of the

InfinityLab

family

When One Dimension is not Enough... 2D-LC may be the answer

Improve peak capacity, additional selectivity, and resolution Increase confidence in the data

• Uncover hidden peaks

Higher throughput

• Shorten long 1D gradient, resolve in short 2D gradient

Trace enrichment of compounds of interest

Software compatible Chemstation, Mass Hunter 11 and OL CDS (Nov. release)

Resources

Zorbax Column Portfolio

A proven and reliable portfolio of totally porous HPLC columns

The Agilent ZORBAX family offers all advantages of totally porous particle columns such as increased retention, loadability and resistance to sample solvents. Easily scale your methods all the way from UHPLC to preparative LC.

Infinity Lab

Agilent ZORBAX	Chemistry	Particle Sizes	Pore Size (Å)	Temperature Limit	pH Range	Endcapped	Carbon Load (%)	Surface Area	USP Designation	Benefits and Applications
Eclipse Plus C18	 	1.8, 3.5, 5	95	60 °C	2-9	Double	9	160 m²/g	L1	General purpose Starting Point for LC method development
Eclipse Plus C8		1.8, 3.5, 5	95	60 °C	2-9	Double	7	160 m²/g	L7	General purpose Lower retention of hydrophobic analytes vs. C18
Eclipse Plus Phenyl-Hexyl		1.8, 3.5, 5	95	60 °C	2-8	Double	9	160 m²/g	L11	Alternative selectivity for aromatic compounds Enhanced pi-pi interactions when using methanol
Eclipse Plus PAH	Polymeric C18	1.8, 3.5, 5	95	60 °C	2-9	Double	14	160 m²/g	L1	Application-specific Designed for the separation of PAHs in LC
Eclipse XDB C18	€ ^{eft}	1.8, 3.5, 5	80	60 °C	2-9	Double	10	180 m²/g	LI	General purpose, higher carbon load Higher hydrophobicity with alternative selectivity for lipophilic analytes
Eclipse XDB C8	Qrs Qrs Crs	1.8 (RRHT) 3.5, 5, 7	80	60 °C	2-9	Double	7.6	180 m²/g	L7	General purpose, higher carbon load Higher hydrophobicity with alternative selectivity for lipophilic analytes but reduc retention vs. XDB-C18
Eclipse XDB Phenyl	sh ch	3.5, 5	80	60 °C	2-9	Double	7.2	180 m²/g	L11	Alternative selectivity for aromatic compounds Enhanced pi-pi interactions when using methanol
Eclipse XDB CN	-0-4-(CH ₂), -CN	3.5, 5	80	60 °C	2-9	Double	4.2	180 m²/g	L10	Polar analytes in RP, low bleed Excellent peak shape of polar and mid-polar compounds
StableBond C18	R=C18	1.8, 3.5, 5, 7	80	90 °C	0.8-8	No	10	180 m²/g	L1	Low pH and high temperature Excellent stability and peak shape at highly acidic conditions
StableBond C8	-0-SI-Ri (R) Ro=C8	1.8, 3.5, 5, 7	80	80 °C	1-8	No	5.5	180 m²/g	L7	Low pH and high temperature Lower retention of hydrophobic analytes vs. C18
StableBond C3		1.8, 3.5, 5	80	80 °C	1-8	No	4	180 m²/g	L56	Low pH and high temperature Reduced retention of hydrophobic analytes
StableBond Aq	(R Proprietary	1.8, 3.5, 5, 7	80	80 °C	1-8	No	Proprietary	180 m²/g	L96	Polar analytes in RP Excellent peak shape and retention of polar compounds using reversed-phase LC

Which particle is best for my method?

		1.8µm	IPLC	1.8 µm ZORBAX RRHD: highest UHPLC performance Maximum pressure: 1200 bar Ideal for: 1290 Infinity II LC or 1260 Infinity II Prime LC										
		1.8µm	LC	1.8 ZOI Maxim Ideal fo	I.8 ZORBAX RRHT: ultra-fast chromatography at up to 600 bar Maximum pressure: 600 bar deal for: 1260 Infinity II LC									
		3.5µm	LC	3.5 µm ZORBAX RR: Higher resolution of HPLC methods Maximum Pressure: 400 bar Update of traditional methods on general HPLC instruments										
5 µm ZORBAX: Proven and reliable for HPLC methods Maximum Pressure: 400 bar Used for traditional methods on general HPLC instruments and in preparative LC														
					7250	9700	10 150	11 600	13.050	14,500	15.950	17.400	18 850	20.300
psi	1450	2900	4350	5800	7200	6700	10,100	11,000	10,000	14,000	10,500		10,000	20,000

What column ID and length should I choose?

Format	Comment
Column ID	4.6 mm for legacy methods 3.0 mm for lower solvent use than 4.6 mm 2.1 mm for lowest solvent use and MS applications
Column length	Shorter 30 to 100 mm for fastest separations Longer 150 to 250 mm for increased resolution

The InfinityLab Poroshell 120 Portfolio

Agilent Poroshell columns are designed for multiple separation modes

Best all around	Best for low pH mobile phases	Best for <mark>high</mark> pH mobile phases	Best for alternative selectivity	Best for more polar analytes	Chiral
EC-C18 ^A	SB-C18 ^A	HPH-C18 ^A	Bonus-RP ^{A,B}	SB-Aq ^{A,B}	Chiral-V ^{Α,C,D}
1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm
EC-C8 ^A	SB-C8 ^A	HPH-C8 ^A	PFP ^{Α,Β,D}	EC-CN ^{Α,Β,C,D}	Chiral-T ^{Α,C,D}
1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm
Phenyl-Hexyl ^A		← CS-C	C18 ^	HILIC ^{D,E}	Chiral- CD ^{A,C,D}
1.9 μm, 2.7 μm, 4 μm		2.7	µm →	1,9 μm, 2.7 μm, 4 μm	2.7 μm
Legend ^A Reversed phase				HILIC-Z ^{D,E} 1.9 μm, 2.7 μm, 4 μm	Chiral-CF ^{A,C,D} 2.7 μm
 ^B Can be operated a ^C Normal phase ^D SFC ^E HILIC 	t 100% aqueous			HILIC- OH5 ^{D,E} 2.7 μm	

Agilent BioColumns Portfolio

Portfolio overview

	Agilent BioColumns											
Titer determination	Intact and fragments	Intact (non- denatured)	Peptides and other	Glycan analysis	Aggregate nalysis	Charge variants						
Affinity	Reversed phase	Hydrophobic interaction	Reversed phase	HILIC	Size exclusion	lon exchange						
Bio-Monolith Protein A and Protein G	AdvanceBio RP-mAb	AdvanceBio HIC* Q2 2018	AdvanceBio Peptide Plus	AdvanceBio Glycan Mapping	AdvanceBio SEC 300 Å. 130 Å	Bio MAb (WCX)						
Multiple Affinity Removal System	Poroshell 300Å		AdvanceBio Peptide Mapping	Zorbax RRHD 300-HILIC	Bio SEC-3	Bio IEX SCX, WCX, SAX, WAX						
	PLRP-S		Zorbax Eclipse Plus C18		Bio SEC-5	PL-SAX and PL-SCX						
	Zorbax RRHD 300 Å 1.8µm		AdvanceBio AAA	AdvanceBio HILIC-Z	ProSEC 300S	Bio-Monolith (QA, DEAE, SO ₃ -)						
	Zorbax 300SB		Zorbax AAA		Zorbax GF250 and GF450							
		i										
	AdvanceBio Desalting Cartridge											

2D-LC Primer

Agtent Technologies	Mode/Stationary phase		
Application	First	Second	Reference
Small molecule pharmaceuticals	RP/C18 (low pH)	RP/C18 (pH 8.6)	59
Surfactants	HILIC/Zic-HILIC	RP/C8-Aqua	48
Traditional Chinese medicine	RP/CN	RP/C18 (low pH)	60
Lipids	Argentation (Silver ion)	RP/C18	49
Carotenoids	NP/Bare silica	RP/C18	61
Peptides	RP/C18 (pH 1.8)	RP/C18 (pH 10)	62
Peptides	IEX/Phosphate modified zirconia	RP/C18 (low pH)	45
Polymethacrylates	RP/C18	SEC/C18 (critical conditions)	63

Table 4.3 Representative recent applications of LCxLC and the separation modes used.

https://www.agilent.com/cs/library/primers/public/5991-2359EN.pdf

Resources for Support

- LC Troubleshooting poster (5994-0709EN)
- Resource page http://www.agilent.com/chem/agilentresources
 - Quick reference guides
 - Catalogs, column user guides
 - Online selection tools, how-to videos
- Agilent 2D-LC, <u>Heart-Cutting 2D-LC, 1290 Infinity II 2D-LC System | Agilent</u>
- InfinityLab Supplies catalog (<u>5991-8031EN</u>)
- LC handbook (<u>5990-7595EN</u>)
- Your local FSE and specialists
- Agilent community, <u>https://community.agilent.com/community/resources</u>
- Agilent University, <u>http://www.agilent.com/crosslab/university</u>
- Youtube <u>Agilent channel</u> (maintenance videos)
- Agilent service contracts

Contact Agilent Chemistries and Supplies Technical Support

Agilent 1-800-227-9770 Option 3, Option 3: Option 1 for GC and GC/MS columns and supplies Option 2 for LC and LC/MS columns and supplies Option 3 for sample preparation, filtration and QuEChERS Option 4 for spectroscopy supplies Option 5 for chemical standards Option 6 for former Prozyme products Available in the U.S. and Canada 8–5 all time zones

gc-column-support@agilent.com

Ic-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com advancebio.glycan@agilent.com

Web chat: Product pages of agilent.com

Appendix

Online ee determination of chiral compounds in complex samples

Objectives

- 1st dimension: Separation of impurities from racemic ibuprofen
- 2nd dimension: Chiral separation of ibuprofen

1D method parameters

- Column: ZORBAX Eclipse Plus C18, 2.1 × 150 mm, 1.8 μm
- Gradient: 0 min 5%, 20 min 95%
- Solvents: A: Water + 0.1% FA; B: ACN + 0.1% FA
- Flow: 0.25 mL/min

2D method parameters

- Column: Chiral column 4.6 × 250 mm, 5 μm
- Solvent: Water/Methanol (35/65) + 0.1 % FA (isocratic)
- Flow: 1 mL/min

Online ee determination of chiral compounds in complex samples

Pharma

Fundamentals of 2D-LC

Coupling of orthogonal separation modes can be challenging

	EXT	SEC SEC	HRP NP+P	⁸ P.P.	RP	KRR HILIC	ACAP	P SECT	NP SECT	JET.
Orthogonality	++	++	++	+	+	-	++	+	+	
				++						Peak
VS.			+	++						Peak ca
Solvent compatibility	+	+		+	-	++	+	+	+	
	+	+	-	++	+	-	+	-	-	Appli

Peak capacity

Peak capacity/time

Applicability

Fundamentals of 2D-LC

The 2D-LC valve is the heart of every 2D-LC instrument

Full symmetry of both flow paths

The 2D-LC valve is a 2nd dimension fixed loop injector

