

Analysis of Flumequine and Oxolinic Acid in Porcine Tissues Using SPE Coupled with HPLC and Fluorescence Detection

Authors

Meicheng Su, Man Jia, and Gang Chen Institute of Quality Standard and Testing Technology for Agro-Products of CAAS, Beijing, China

Dan Li China Institute of Veterinary Drugs Control, Beijing, China

Cuiling Wu, Yao Xiao, Congcong Zhang, and Xia Yang Agilent Technologies, Inc.

Abstract

This study developed and validated a method for quantitative analysis of flumequine and oxolinic acid in pork, porcine liver, and porcine fat. The method uses Agilent Bond Elut C18 SPE coupled with HPLC/FLD analysis. The method provides a reliable solution with good recoveries and acceptable producibility. The method works for residue analysis of flumequine and oxolinic acid in variety of porcine tissues.

Experimental

Target analytes

Two target analytes in this application include flumequine and oxolinic acid.

Instrument method

The samples were run on an Agilent 1260 Infinity II LC system coupled to an Agilent Fluorescence detector (FLD) system. Agilent ChemStation software was used for data acquisition and analysis.

HPLC conditions

Parameter	Value
Column	Agilent ZORBAX Eclipse Plus C18, 250 × 4.6 mm, 5 μm (p/n 959990-902)
Flow Rate	0.8 mL/min
Column Temperature	30 °C
Injection Volume	20 µL
Mobile Phase	0.02 mol/L Phosphate/ACN/THF (68/16/16)
Detection Wavelength	Ex = 325 nm, Em = 369 nm

Add 10 mL of phosphate buffer and ceramic homogenizer, cap, and vortex for 5 minutes. Centrifuge at 15,000 rpm for 10 minutes, then transfer the supernatant to a new 50 mL centrifuge tube. Repeat the extraction once with 10 mL of phosphate buffer, combine the supernatant, and mix well. Compensate the volume to 20 mL, centrifuge at 15,000 rpm for 10 minutes, then transfer the supernatant for later use. Condition and equilibration of Bond Elut C18 cartridge (100 mg, 3 mL, p/n 12102099) with 2 mL of methanol and 2 mL of water Load 6 mL of sample, wash with 2 mL of water, and elute with the buffer of 0.02 mol/L Phosphate/ACN/THF (68/16/16) Filter 1 mL of supernatant with a Captiva RC syringe filter. Samples are now ready for LC/FLD analysis.

Accurately weigh 2 g of homogenized sample in a 50 mL centrifuge tube.

Figure 1. Sample preparation workflow chart.

Sample extraction

Figure 1 shows the procedure.

Results and discussion

Table 1. Method recovery and RSDs for pork.

Analytes	Spiking Level (ng/g)	Batch	I	Recovery (%	.)	Intra RSD	Inter RSD	Average Recovery (%)
Flumequine	20	1	76.27	79.25	81.28	3.19	6.27	78.93
		2	78.70	79.58	78.04	0.98		78.77
		3	86.99	91.59	84.61	4.04		87.73
	100	1	94.39	89.27	85.17	5.15	5.08	89.61
		2	92.13	93.65	87.88	3.28		91.22
		3	95.90	99.68	99.89	2.28		98.49
		1	98.85	98.09	96.66	1.14	1.82	97.87
	300	2	95.57	98.45	98.07	1.61		97.36
		3	90.21	99.72	93.91	5.07		94.61
Oxolinic Acid	20	1	79.09	80.76	84.31	3.28	7.94	81.39
		2	85.22	77.79	80.34	4.65		81.12
		3	89.44	93.74	95.71	3.45		92.96
	100	1	86.59	86.76	87.58	0.61	8.51	86.98
		2	87.20	85.26	85.88	1.15		86.11
		3	99.76	100.13	99.94	0.19		99.94
	300	1	100.00	99.55	92.00	4.62	1.08	97.18
		2	99.91	97.84	98.82	1.05		98.86
		3	99.51	99.57	98.34	0.70		99.14

Table 2. Method recovery and RSDs for porcine liver.

Analytes	Spiking Level (ng/g)	Batch		Recovery (%)	Intra RSD	Inter RSD	Average Recovery (%)
Flumequine	20	1	91.49	98.59	93.68	3.88	2.67	94.59
		2	99.99	99.92	98.82	0.66		99.58
		3	97.90	99.84	97.32	1.36		98.35
		1	77.98	83.65	71.20	8.75	9.2	77.61
	100	2	72.46	72.66	70.36	1.81		71.83
		3	85.27	83.09	90.20	4.04		86.19
		1	91.09	83.90	92.28	4.91	11.17	89.09
	300	2	92.19	98.57	97.94	3.59		96.23
		3	79.93	74.32	76.53	3.69		76.93
Oxolinic Acid	20	1	79.50	80.71	77.10	2.38	9.11	79.10
		2	79.57	84.21	79.96	3.22		81.25
		3	98.35	95.59	86.22	7.37		93.39
	100	1	75.62	81.38	73.42	5.60	12.34	76.81
		2	76.29	75.88	75.44	0.56		75.87
		3	95.59	87.71	98.38	5.62		93.89
	300	1	83.01	86.59	81.93	2.98	9.68	83.84
		2	80.34	82.11	76.59	3.68		79.68
		3	96.14	92.81	98.47	2.89		95.81

Table 3. Method recovery and RSDs for porcine fat.

Analytes	Spiking Level (ng/g)	Batch	Recovery (%)			Intra RSD	Inter RSD	Average Recovery (%)
	20	1	80.39	80.31	83.78	2.43	6.63	81.49
		2	92.10	99.82	86.09	7.43		92.67
		3	82.82	86.13	85.76	2.14		84.90
		1	78.65	79.61	83.99	3.53	1.51	80.75
Flumequine	100	2	80.18	77.92	81.24	2.13		79.78
		3	81.55	81.14	83.92	1.83		82.20
	300	1	81.40	79.95	77.49	2.48	2.3	79.61
		2	80.67	78.98	76.24	2.84		78.63
		3	82.69	83.04	80.86	1.42		82.20
Oxolinic Acid	20	1	77.57	82.61	72.51	6.51	4.37	77.56
		2	90.30	75.42	76.80	10.17		80.84
		3	86.45	80.87	86.61	3.86		84.64
	100	1	78.44	83.49	81.24	3.12	2.49	81.06
		2	79.60	81.16	81.06	1.08		80.61
		3	87.11	80.80	85.14	3.83		84.35
	300	1	78.55	80.58	80.90	1.59	1.75	80.01
		2	80.03	84.91	82.03	2.98		82.32
		3	82.94	81.47	83.42	1.23		82.61

Conclusion

This method uses Agilent Bond Elut C18 coupled with fluorescence detection for analysis of flumequine and oxolinic acid in variety of porcine tissues. The method has excellent recoveries and linearity between 5 to 500 ng/mL. High efficiency cleanup by Bond Elut C18 shows no interference on the target peaks. The average recoveries are in the range of 71.8 to 99.5% and 75.8 to 99.9% respectively with acceptable reproducibility (RSD<15%). The limit of quantitation for both targets is 20 ng/g, and the limit of detection is 5 ng/g.

www.agilent.com/chem

DE.5196527778

This information is subject to change without notice.

© Agilent Technologies, Inc. 2020 Printed in the USA, June 25, 2020 5994-1943EN

