
Food Fraud Guide

Executive summary
Knowing that food fraud scandals often drive public awareness and regulatory 
changes, the goal of this paper is to present analytical techniques and experimental 
methodologies, and introduce multivariate statistics and sample class prediction as 
it relates to food adulteration. Some approaches such as molecular spectroscopy 
tend to be less expensive, and a few of these instruments have been miniaturized 
to the point where they can be field-deployed. Spectroscopic instruments are useful 
in fingerprinting food because small changes in a sample’s spectral profile can 
be detected with the latest technology, assuming appropriate data normalization 
techniques are applied. Similarly, the use of both unit- and high-resolution-based 
mass spectrometry (MS) can be important in food fraud testing because they can 
fingerprint food based on the pattern of discrete compounds they detect. While 
other techniques such as inductively coupled plasma mass spectrometry (ICP/MS) 
and inductively coupled plasma optical emission spectrometry (ICP/OES) have 
proven adept at identifying geographic origin based on trace element analysis. 
Genomic testing can accurately identify fish DNA, even from processed samples. 
From a methodological perspective, nontargeted approaches have proven effective 
in fingerprinting samples. The advent of inexpensive computer workstations 
and statistical software has made it possible to link nontargeted workflows with 
multivariate statistical analysis to extract useful information from analytical data. 
Until recently, these approaches have been too expensive or complex for researchers 
to perform by themselves; instead, the data had been handed over to dedicated 
statisticians or never fully investigated. But now, there are moderately priced tools 
that allow researchers to more easily use statistical approaches for determining 
attributes such as sample quality and building sample class prediction models. 

Methodologies for Food Fraud

Tips for robust experimental results
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Introduction
As background to why adulteration is 
an important issue, you may recall the 
melamine scandal that broke out in 2007 
when dogs and cats were poisoned by 
their food.1 Investigations discovered 
the dog and cat food was tainted with 
a mixture of melamine and its triazine 
analogs (ammelide, ammeline, and 
cyanuric acid). These inexpensive but 
highly nitrogenous industrial chemicals 
were being used to boost the nitrogen 
content in food to give the perception 
that the foods were rich in protein.2

As awareness grew, the adulteration 
of food with melamine quickly became 
an international problem. It was later 
detected in baby formula produced in 
the US, cookies distributed in Canada, 
chocolate sold in Asia and Australia, 
condensed milk in Thailand, and eggs 
in Hong Kong. During the scandal, 
international agencies such as the 
World Health Organization, the Food and 
Agriculture Organization, the European 
Food Safety Association, and the 
International Food Safety Authorities 
Network worked together to characterize 
and control the crisis. While 68 countries 
banned or recalled foods suspected 
of containing melamine,3 many 
countries established allowable limits 
for melamine, with the FDA maximum 
residue limit (MRL) as 1 part per million 
(ppm) for infant baby formula, and 
2.5 ppm for other products.4 The FDA 
also set up an economically motivated 
adulteration (EMA) working group. In 
2009, it defined EMA as the fraudulent, 
intentional substitution or addition of a 
substance in a product for the purpose 
of increasing the apparent value of 
that product or reducing the cost of its 
production (that is, for economic gain).5 

Beyond fundamental safety concerns, 
food adulteration cheats consumers, as 
has been demonstrated with extra virgin 
olive oil (EVOO). A study from 2010 found 
that imported olive oil, which at that 
time accounted for 99% of the EVOO on 
the US market, often failed the sensory 
test for EVOO classification.6 Experts 
now claim that up to 80% of EVOO is 
fraudulently labeled.7 It is relatively 
straightforward to perform established 
tests for distinguishing EVOO and 
other grades of olive oils. Two popular 
examples are the HPLC measurement 
of diacylglycerol or pyropheophytin 
(a breakdown product of chlorophyll).8 
However, these tests can generate 
false positive and false negative results, 
and fraudsters can use an alternative 
adulterating oil to pass the tests.

Furthermore, there are flavor defects 
that can lead to a true EVOO not passing 
sensory testing. Mustiness, rancidity, and 
acidity can all be issues, especially with 
badly stored EVOO. Chemical analysis 
offers potential solutions to screen for 
these issues based on the concentration 
of specific markers such as acids, esters, 
and aldehydes being found at high ppb to 
low ppm concentrations.9 

As chemists search for more 
reliable tests for EMA, new analytical 
instruments and methodologies are 
being explored. The key is finding the 
right technique for your application and 
budget.

MS-based food testing
Full spectrum (time of flight), scanning 
(quadrupole), and image building 
(Fourier transform) MS techniques are 
good tools for sample classification. 
They vary in price from inexpensive gas 
chromatography/mass spectrometry 
(GC/MS) instruments, more expensive 
Fourier transform mass spectrometers 
(FTMS), to high-price, high-value liquid 
phase ion mobility quadrupole time of 
flight instruments (IM/Q-TOF).

The Agilent 8890 GC system and Agilent 5977B 
GC/MSD.

Many volatile and semivolatile 
compounds are routinely analyzed by 
electron ionization (EI)-based GC/MS. 
This technique has the advantage of 
EI spectra that can easily be library 
searched against the large NIST 17/Wiley 
Registry 11 library that contains 597K 
compounds and over one million spectra. 
This gives an unprecedented ability to 
tentatively identify many volatile and 
semivolatile compounds. There are 
some limited structure-elucidation tools, 
such as the MS Interpreter and the 
substructure search feature provided 
by NIST, which are useful with unit 
mass data. Adding a full-spectrum 
accurate‑mass instrument such as 
a GC/TOF or GC/Q‑TOF provides 
structural information and allows 
identification of unknown compounds 
through the generation of fragmentation 
trees and thermodynamic-based 
structure elucidation tools such as 
Agilent Molecular Structure Correlator. 
The FT-traps have excellent mass 
resolution, but image building is not 
yet fully developed for EI analysis, and 
the match factors are lowered due to 
missing peaks. One solution to this 
problem is to develop a proprietary 
identification algorithm that places 
greater emphasis on mass accuracy, and 
less weight on missing ions. 
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Feature-finding analysis
There is also a mixture of commercial 
and academic feature-finding tools 
going back to AMDIS that was made 
public by NIST in the early 1990s.10 A 
good academic solution for EI peak 
alignment and data extraction is the 
AMDIS/manual curation/SpectConnect. 
Unlike XCMS and MZmine, SpectConnect 
is specifically designed for EI data.

GC also lends itself to multidimensional 
chromatography with various 
commercially available solutions from 
companies such as Agilent, LECO, 
and ZOEX. An advantage for these 
techniques is that they typically have 
a higher signal-to-noise (S/N) than 
the unmodulated counterparts. Their 
disadvantage is that they require 
specialized hardware and peak 
deconvolution tools from companies 
such as GC Image. This software tool 
works well for analyzing samples 
sequentially, but has not been optimized 
for batch analysis, a cornerstone of 
nontargeted analysis.11 

Nontargeted workflows depend on 
reproducible feature-finding software, 
ideally based on recursion. Recursive 
feature finding aims to minimize both 
false positives and false negatives. 
It does this by eliminating ions 
considered noise, aligning retention 
times, aligning masses, and ion 
binning to build a consensus library 
(consisting of a composite feature list 
and corresponding composite feature 
spectra). The consensus library is used 
by the algorithm to re-assign individual 
ions. This reduces the number of false 
positives. The remaining unassigned 
features are then used to perform a 
targeted search. This process reduces 
the number of false negatives due to 
missing values by re-examining the 
target list with less-stringent criteria. 
Recursive feature extraction is designed 
to increase the quality of the overall 
results. Since no algorithm is perfect, 

batch-wise manual editing of the results 
should be permitted following batch 
recursive feature extraction. XCMS 
is an online public resource for the 
nontargeted analysis of small molecules 
developed by The Scripps Research 
Institute that follows a similar workflow 
to fill in missing peak data.12

Once the feature-finding data have been 
reviewed and any integration errors 
addressed, the data can be exported 
as text files. If a peak is not found, it 
is considered missing. There may be 
an option in the statistical software 
to treat missing values either as zero 
abundance or as peaks that were 
not found. Selecting zero abundance 
strongly impacts the statistics. Choose 
this option only if the data have been 
carefully reviewed, and it has been 
confirmed that the peak is missing. 
Select missing values if the data are 
not carefully reviewed and the missing 
component might be a false negative.

Targeted and nontargeted methods
The combination of targeted and 
nontargeted chemometric approaches 
provides a good solution when 
evaluating samples that allow accurate 
identification of expected compounds, 
but also allow for the presence of 
unexpected components. A good 
example of this approach is the work 
done by Hjelmeland and colleagues 
evaluating the chemical and sensory 
profiles of Cabernet Sauvignon wines by 
HS-SPME. That study shows a targeted 
analysis using a nontargeted workflow 
with synchronous SIM/Scan.13 Including 
a nontargeted component allows for 
retrospective analysis later. 

Fragrant rice such as Basmati and 
Jasmine have higher concentrations 
of 2-acyl-1-pyrroline due to a loss 
of function mutation in the fgr gene 
product.14 DNA testing could look for 
the mutated gene, but there are other 
key volatiles found in rice such as 
hexanal, which is associated with lipid 

oxidation. Volatile components such 
as these are relatively easy to separate 
chromatographically, and can be used 
to evaluate sensory attributes as well 
as characteristics associated with rice 
adulteration.15 Subsequently, integrating 
headspace solid-phase microextraction 
into the methodology eliminates much of 
the sample preparation.16 

The Agilent 1290 Infinity II LC system with an 
Agilent 6546 LC/Q-TOF.

To build reproducible prediction models, 
MS-based EMA methods should focus 
on finding robust identifiers instead 
of all identifiers. An example of this 
approach is when a LC/Q-TOF was 
used in full‑spectrum mode to show 
the applicability of this instrument 
for differentiating mango variety. The 
approach relied on newer software 
tools to identify robust classifiers and 
constructing class prediction models. 
Even with the latest software tools, skill 
and expertise are required to develop a 
robust prediction method. However, the 
subsequent step of running the class 
prediction model should not require 
as much technical skill. Therefore, a 
software automation tool was created 
that contains the feature-finding method 
as well as the sample class prediction 
models. This allows production data 
files to be run in a streamlined manner 
against a previously developed MS‑based 
model.17
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Elemental fingerprinting 
techniques for geographic 
indication
Elemental fingerprinting can be used 
for many applications such as process 
quality control, identification of elemental 
contaminants, and speciating samples 
based on their trace elemental profiles. 
High-value foods and beverages that 
are characterized by origin and are 
produced in limited quantities are targets 
for EMA. To clarify the definitions of 
geographic indication (GI), the World 
Trade Organization Agreement on 
Trade‑Related Aspects of Intellectual 
Property Rights (TRIPS) was agreed 
upon by all 164 member countries. The 
obligations are related to two articles, 
22 in which each country has laws to 
prevent the use of marks that mislead 
the public as to the geographical origin 
of the goods. Article 23 says that 
governments may refuse to register or 
may invalidate a trademark that conflicts 
with a wine or spirits GI whether the 
trademark misleads or not.18

Food and beverages can be localized to 
country of origin by elemental content. 
The source of the trace and rare earth 
elements can originate from several 
sources such as the raw ingredients 
or from the local soil, environment, 
fertilizers, and agrochemicals. The 
processing steps such as CuSO4 added 
to wine to remove thiols, or Zn and 
Fe leaching from steel fermentation 
equipment, or copper leaching from 
the distillation equipment can also 
contribute. Finally, bottling and storage 
can cause lead to leach from the metal 
capsule seal of a wine bottle. 

Common analytical methods for the 
determination of trace metals in foods 
can be as simple as ion chromatography, 
electrochemical analysis, or 
atomic absorption spectrometry. 

The electrochemical techniques are 
simple and inexpensive but are only 
useful for looking at a handful of specific 
metals. More expensive instruments 
such as atomic emission spectrometry 
(AES), ICP-OES, and ICP-MS have the 
ability to simultaneously detect trace 
and rare earth elements at low detection 
limits.19 

Isotope-ratio mass spectrometry 
(IR‑MS) has been shown to be useful 
in determining geographic indications 
using stable-isotope ratios. The samples 
are first converted into simple gasses 
such as hydrogen, carbon dioxide, 
carbon monoxide, nitrogen, oxygen, 
or sulfur dioxide using an elemental 
analyzer connected to a stable IR-MS. 
The isotope-pair ratios, such as 13C/12C 
and 15N/14N can be plotted together to 
help distinguish between geographic 
locations where the 13C/12C ratio depends 
mainly on the biochemical type of plant, 
while the nitrogen ratio reflects the local 
soil conditions. The nitrogen ratio can be 
greatly influenced by the type of fertilizer 
used, with mineral fertilizer fixed from 
atmospheric nitrogen having a ratio 
close to zero while organic fertilizer has a 
higher 15N/14N ratio.20

The Agilent 7900 ICP-MS system.

ICP-MS is a powerful tool for elemental 
analysis, providing part per billion (ppb) 
or trillion (ppt) limits of analytical 
detection for more than 70 elements. 
Trace-element availability depends on 
various geographic factors such as 

soil pH, humidity, clay, and humic acid 
complexes,21 for example authenticity 
testing in Pu-erh tea from the Yunnan 
province in China. An ICP-MS was used 
to test 30 tea samples in triplicate 
for 29 elements. The results were 
analyzed by multivariate statistics using 
supervised learning. Canonical variate 
analysis showed two vectors. The first 
was based on macro elements such as 
Na, Mg, and Ca and micro elements such 
as Sr, Zr, Mo, and trace elements. This 
primary vector differed between the tea 
regions. The second vector separated the 
green teas from the black and fermented 
teas. This vector depended on the levels 
of Rb, Mn, W, Re, and Tl, all of which were 
higher in the black and fermented teas.22

Most ICP-MS interferences are 
polyatomic, and possess a greater ionic 
cross-section relative to mono‑atomic 
ions. This characteristic can be exploited 
to remove background interferents 
through collisions with an inert gas. 
This process, called kinetic energy 
discrimination, causes all ions to lose 
energy in proportion to their collisional 
cross-section. The process reaches 
a point in which the polyatomic ions 
have lost enough energy and can be 
removed from the mass spectrum. 
With an inert collision gas such as 
helium, no side reactions or new product 
interferences are formed.23 A triple 
quadrupole ICP‑MS also benefits from 
kinetic energy discrimination. However, 
it also can eliminate mono-atomic 
interferences using reactive gases in the 
collision cell.22 In both cases, modern 
ICP-MS instruments are significantly 
more selective and sensitive than their 
predecessors. 
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Spectroscopic techniques 
in authenticity testing
There are several types of EMA seen with 
wine and spirits. It can be as simple as 
sourcing an authentic bottle and either 
diluting the product with a cheaper 
alternative, counterfeiting a quality 
product with inexpensive alcohol and 
additives to simulate the original product, 
or it can be as bad as unscrupulously 
using diluted tax-free denatured alcohol 
to make a dangerous fake.24 

Fourier transform infrared (FTIR), 
near infrared (NIR), and 
Raman spectroscopy
Milk is one of the seven most adulterated 
foods.25 Water, whey, sodium hydroxide, 
urea, melamine, and hydrogen peroxide 
have been used to adulterate milk by 
increasing volume, obtaining higher 
protein content values, or sanitizing the 
product. Although direct measurement 
of milk samples is ideal, water and fat 
masks some of the spectral signals. 
A chloroform extraction was used 
to remove the fat, and an aliquot of 
the water fraction was dried on the 
attenuated total reflectance (ATR) 
diamond crystal. Regardless of which 
technique was used, there were 
prominent absorption bands. Midinfrared 
(MIR) showed major spectral differences 
between the control samples and 
the adulterated milk from 1,600 to 
1,200 cm–1. Spectra of milk adulterated 
with whey had prominent amide I 
stretching (C=O) at 1,635 cm–1 and 
amide II (N-H bending/C-H stretching) 
at 1,530 cm–1. Samples adulterated 
with urea, synthetic milk, and urine 
showed a strong urea stretching (C=O) 
at 1,615 cm–1, and NH4

+ deformation 
at 1,454 cm–1. There were also strong 
bands observed in the O-H stretching 
region 3,700 to 3,200 cm–1, and 
additional absorption bands in the 
complex fingerprint region from 1,200 to 
800 cm–1.26 The NIR region extends 

from 13,300 to 4,000 cm–1. This energy 
range is not high enough for electron 
excitation but higher than necessary 
to promote molecules to their lowest 
vibrational states. NIR spectra are based 
on molecular overtones and combination 
bands, weak signals that are not 
allowed by quantum mechanics. One 
advantage of NIR’s lower absorptivity 
is that it can penetrate further into a 
sample than MIR.27 Specifically, the NIR 
milk adulteration samples showed two 
prominent absorption bands at 7,700 and 
5,000 cm–1.

While both MIR and NIR instruments 
are capable of adulteration testing, MIR 
tended to provide better classification 
models and quantification after principal 
component analysis (PCA)-based 
chemometrics.26 Both UV-Vis and IR 
techniques are based on absorbance, 
and the amount of light absorbed is 
an absolute measurement. That is not 
to say that they are not independent 
of physical parameters, for example 
the granularity of a sample is very 
important, as shown in the following 
rice authenticity discussion where 
multiplicative scatter correction was 
required to correct for the granular 
nature of rice. 

Rice is the staple food of more than 
half of the world’s population, with 
approximately 480 million metric tons of 
milled rice produced annually, 85% of it 
for human consumption.28 Unfortunately, 
EMA is a concern, as it is easy to dilute 
quality rice with substandard rice or 
add adulterants.29 Field-based NIR 
techniques have been developed to 
identify rice by classifications such 
as geographical indication30 or a 
measure of sample quality. In these NIR 
studies, normalization is an important 
component of the predictive quality of 
the NIR method. In the sample quality 
study, multiplicative scatter correction 
was able to distinguish sample classes 
of rice, while detrend and mean 

centering were not enough.31 The use 
of multiplicative scatter correction is a 
common thread in NIR rice authenticity 
studies.32

Spatially offset Raman spectroscopy 
(SORS) is a technique used for security 
screening in European airports.33 As a 
technology, it shows promise for EMA, 
as limitations such as fluorescence 
are being addressed through scientific 
advancement. A traditional Raman 
system uses a laser of approximately 
785 nm, which is good for sensitivity but 
bad for interference from fluorescence. 
Newer Raman systems use longer 
wavelengths. The Agilent Resolve 
handheld SORS instrument has 
addressed fluorescence as a concern 
by increasing the wavelength to 830 nm, 
generating a smaller signal response, 
much less susceptible to fluorescence. 
The SORS method also reduces 
fluorescence from the packaging 
materials, such as colored plastics or 
glass. The operation of SORS includes 
a spectral normalization step. The 
instrument first collects zero mode 
spectra, which are like a traditional 
backscatter mode where the results 
are biased by the surface. The laser 
automatically shifts position before 
taking an offset measurement to correct 
for the container contribution to the 
spectrum. 

EMA samples for SORS evaluation 
were provided by the Scotch Whiskey 
Research Institute at real-world levels 
of denaturants and adulterants. 
Six denaturants commonly used are: 
methyl ethyl ketone, isopropyl alcohol, 
methyl isopropyl ketone, ethyl sec-amyl 
ketone, methanol, and denatonium 
benzoate. These have been detected 
using a handheld SORS instrument 
down to ppm to sub-ppm levels. 
Typical flavorings used to adulterate 
whiskey are vanillin, sucrose, limonene, 
and trans‑anethole. These have been 
detected in the low ppm range. All of 



6

these were tested in closed glass 
threaded vials. To extend the usefulness 
of this technique to real-world conditions, 
additional samples were bought in 
stores to test the usefulness of SORS 
with the types of containers typically 
used for wines and spirits: clear flint, 
green, and brown glass. The dark glass 
reduced light transmission so that 
more measurements were required 
to achieve the highest S/N possible. 
With these stipulations, methanol was 
detected down to 250 ppm (well below 
the tolerance level of 20,000 ppm, or 
2%), and all the other adulterants were 
detected down in the ppm range. The 
Resolve is sold as a field-based detection 
system for narcotics, explosives, and 
hazardous materials. The limits of 
detection (LODs) achieved in the above 
study used offline processing methods, 
not currently available on the Agilent 
Resolve handheld SORS instrument.

Genetic profiling for 
authenticity testing

The Agilent 2100 Bioanalyzer Instrument.

Traditional authenticity testing of fish 
has been based on visual inspection. 
Unfortunately, many fish are difficult 
to visually distinguish while alive, and 
the removal of fins and scales during 
processing makes visual identification 
impossible. An antibody-based solution 
could be used for field-based testing. 
However, this approach does not 
work after the meat has been cooked 
because proteins often denature 
though heating. Another approach, 

DNA testing, is relatively stable to food 
processing.34 It can also be used to 
identify simple admixtures of meats 
and proteins until overlapping profiles 
complicate interpretation.35 Despite 
the promise of DNA testing, there are 
several considerations that need to be 
considered. One drawback is that the 
nuclear genome is large and largely 
conserved. However, mitochondrial DNA 
(mtDNA) has a relatively fast mutation 
rate, comes from a single parent, and 
is 100,000 times smaller.36 Initially, 
mtDNA approaches were developed 
on both mitochondrial cytochrome b 
and c regions. Eventually, the Barcode 
of Life Data System was adopted. 
The standard for animal identification 
became the 684 base pair region of the 
cytochrome C oxidase I (COI) gene.37 The 
fish identification protocol was adapted 
to this standard.38

Other advancements in fish mtDNA 
analysis came from hardware 
improvements. The initial experiments 
were done using polymerase chain 
reaction-restriction fragment length 
polymorphism (PCR-RFLP) with capillary 
gel electrophoresis and staining for 
endpoint detection.39 This approach 
was improved by replacing the gel 
electrophoresis step with a lab-on-a-chip 
capillary electrophoresis system.40 

However, the Barcode of Life approach 
took longer to develop for land plants 
because of the high genetic diversity 
found in plant species. It was decided 
that targeting the conserved nuclear 
transcribed region would be reliable.41 
The CBOL Plant Working Group 
recommended using rbcL and matK 
genome sequences in 2009.42 Prior to 
this standard approach being agreed 
on, various microsatellite markers were 
being used with PCR-RFLP. An example 
of this was the Basmati rice authenticity 
proof-of-concept project. In that study, 
it was shown that DNA testing could 
quickly determine admixtures of between 

10 and 20% non-Basmati rice.43 

PCR-RFLP approaches represent the 
standard authentication approach, and 
are good at generating a single sequence 
to compare with Barcode of Life-based 
public databases.44 An approach is 
emerging designed to identify mixtures 
of unknown species, and is based on 
next-generation sequencing (NGS). NGS 
eliminates the need for cloning DNA 
fragments by bacteria. Instead, it is 
cell-free, can sequence multiple samples 
in a single run, and the results can be 
observed without gel electrophoresis.45 
Since NGS is based on fragmenting 
and processing DNA in parallel, it is 
suited to identify multispecies seafood 
products such as surimi. To distinguish 
between the fish and mollusk species, 
an experiment can use species-specific 
universal primers with a metabarcoding 
approach to classify genera and species 
of fish and mollusks. The Basic Local 
Alignment Tool (BLAST) is a specialized 
software for aligning and evaluating the 
results.46

Other techniques of note
Electronic Nose (e-Nose) detects 
volatiles using chemical (amperometric 
and conductometric), piezoelectric, and 
optical (smell-sensing) sensors, and 
those based on GC and MS.47,48 The most 
frequently used e-Nose sensors are 
electrochemical. The number and type 
of sensors as well as their selectivity 
and sensitivity depend on the e-Nose 
application. E-Noses, due to their rapid 
screening capacity, can be an alternative 
to traditional GC. It has identified 
Emmentaler cheese from various 
geographic regions.49 The drawback 
with this approach is that without 
chromatography or spectral data it is 
not possible to identify specific volatile 
compounds to monitor.

1D and 2D HR-NMR processed with 
multivariate statistics have detected 
fraud in the honey industry, and assisted 
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in identifying and quantifying several 
parameters such as sugars and amino 
acids. To ensure quality control while 
minimizing safety issues, the profiles of 
screened food products are compared 
to a larger database of genuine food 
samples.50

General nontargeted 
analysis workflow
For nonchromatographic techniques, 
such as a spectrometric analysis, we are 
not concerned with identifying individual 
components. In these experiments, we 
are simply looking for spectral features 
that differentiate between sample types. 
However, with MS-based techniques, 
we have the option of processing the 
samples through an identification 
protocol. This enriches the data, and 
allows us to compare results against 
known adulterants, sensory defects, and 
potential contaminants. Thus, adding a 
targeted component to a nontargeted 
approach can provide valuable insight. 

It is important to recognize that 
an incorrect identification reduces 
the statistical significance of the 
experimental results. Therefore, leaving 
the results unidentified is preferential to 
including spurious identifications. Only 
include a targeted (known) component 
in your experiment if you are confident 
about your ability to consistently identify 
it. With chromatographically separated 
components, there are significant 
challenges to identification such as: poor 
retention time consistency, incomplete 
peak separation, isomeric and isobaric 
compounds, and unresolved peaks. 
These challenges lead to alignment 
problems, false peak detection (false 
positives and false negatives), and 
identification errors. Even in the best 
circumstances, data review is an 
important step in the workflow.

Most of the chemical tests used for 
adulteration only screen for a few well 
characterized attributes. Using EVOO as 
an example, known degradation products 
for sample quality are compounds 
such as pyropheophytin, a degradation 
product of chlorophyll, and 1-octen-3-ol, 
which contributes to a musty odor. Other 
known compounds have fermented, 
rancid, or musty attributes.

We can augment chemical tests with a 
sensory panel of experts. The biggest 
drawback is that this approach is labor 
intensive (expensive) and slow (experts 
only work for a short period of time 
before their ability to identify subtle 
characteristics wane). A combination of 
a sensory training set and multivariate 
statistics can offer a cheaper, more 
efficient, and reproducible approach for 
determining authenticity.

Key experimental factors 
for multivariate statistics
Ideally, adulteration would be tested 
in the raw materials, as opposed to 
downstream products, which can 
dilute and mask them. If possible, 
evaluate multiple analytical techniques 
to determine which one best meets 
your requirements. Spectroscopic, 
spectrometric, as well as nuclear 
magnetic resonance are all options 
for a specific food fraud test. Cost, 
complexity, sensitivity, and portability 
influence selection between competing 
methodologies. 

Balance sample class prediction 
experiments with similar group sizes for 
authentic and adulterated samples, or 
unequal sampling can bias the statistical 
results because the heterogeneity 
of variance is an assumption in 
one-way analysis of variance (ANOVA) 
experiments. Modern statistical software 
tools can compensate for some of the 
bias, but it is better to avoid problems 
rather than having to try to minimize their 
effect after the data have been collected. 

It is easy to set up a multivariate 
statistics sample class prediction 
method and get results that seem 
predictive based on the test data set. But 
having too many independent variables 
can lead to a class prediction method 
that fails to predict subsequent samples 
despite fitting the training data set. This 
situation is typically caused by overfitting 
the data. To reduce the likelihood of 
this scenario, see if simplifying to a 
two-dimensional PCA is effective at 
separating the sample classes. In 
general, prediction models that need 
fewer independent variables to predict 
class differences are stronger models, 
and are less prone to data overfitting. 

Data quality is critical, so design the 
experiment around good analytical 
principals. Initially, minimize sample 
preparation for nontargeted workflows, 
as it biases what can be detected. When 
necessary, use dilution and simple 
extractions to deal with matrix effects. 
Considering that successful models use 
discreet class-specific characteristics 
for prediction, once these factors are 
confirmed, sample preparation and 
chromatography can be optimized to 
ensure that these variables are robustly 
measured in the final targeted prediction 
method. 

Data normalization also needs to be 
carefully considered. With small sample 
class prediction methods, it is possible 
to pool samples for normalization 
controls. The advantage of this approach 
is that every component is present, and 
matrix and instrument effects can be 
reduced. However, it is not appropriate 
for the subsequent production sample 
class prediction methods in that the 
acts of pooling samples and running 
these pooled samples on a regular 
basis requires significantly more 
resources than adding appropriate 
internal standards. Instead, internal 
standards should be representative 
of the classes of adulterants being 
evaluated. Similarly, use proficiency 
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samples at the beginning and the end of 
each analytical batch to confirm that the 
instrument’s performance is stable. The 
targeted sample class prediction method 
should be optimized for high-throughput 
production. 

Sample class prediction is a form of 
supervised learning. It is a good practice 
to limit the number of dependent 
variables, ideally a single variable per 
predictive method. For example, sample 
type is the variable with vehicle blank, 
control, and known adulterants being 
instances. Using milk as an example, 
adulterants could be water, whey, 
sodium hydroxide, urea, melamine, 
and hydrogen peroxide. With obvious 
adulterants such as these, three 
technical replicates of every sample can 
confirm chromatographic reproducibility, 
if necessary, and five samples per 
condition should be enough for statistical 
significance. It may be that each target 
adulterant is distinguished enough to 
be characterized by its absorbance 
frequency in the sample spectra. In these 
cases, it is possible that a spectroscopic 
approach can be used to identify 
adulteration in the field using a handheld 
FTIR, potentially avoiding more involved 
lab-based approaches. 

In other cases, as we see with the 
rampant miss-classification of EVOO, 
some substitutions are subtler and are 
therefore more difficult to expose. In 
these cases, chromatography and a 
sample class prediction workflow are 
necessary to detect fraud. Decide the 
scope of the method early. For example, 
fustiness, mustiness, rancidity, and 
vinegariness can all be issues, especially 
with badly stored EVOO, that lead to 
lower classifications such as virgin olive 
oil or worse. These four defects are well 
characterized, but there are many other 
factors that would lead to a failed EVOO 
classification that are dependent on 
the phenotype. Is it necessary to build 
a method robust enough to identify the 

major contributors to the most common 
flavor characteristics, and how many 
olive varieties are going to be included in 
the training set.

It is important to determine in subtle 
class prediction experiments if there 
is an appropriate amount of biological 
variation in the training data to cover 
the phenotypic differences and the 
various targeted characteristics. Are 
there enough samples to have statistical 
power? Post-hoc power analysis can 
determine the minimum required number 
of samples based on the statistical 
power of the pilot experiments.51

Chromatographic reproducibility 
is important, especially with mass 
spectrometry techniques. Even though 
there are chromatographic peak warping 
tools to help correct for chromatographic 
drift, peak alignment may not correctly 
identify structural isomers that nearly 
co‑chromatograph if the retention times 
are drifting during the run. It is better to 
avoid chromatographic problems rather 
than deal with them after the fact. To 
ensure that any run order effects do not 
influence the overall outcome, analyze 
samples in random order. For example, 
matrix interferences can cause either 
signal suppression or enhancement. This 
often happens gradually throughout a 
batch. 

After the data are collected, review them 
to look for chromatographic or spectral 
outliers that can bias the results. A 
simple approach is to visually review 
the data. If the problem seems to be a 
batch‑based chromatographic effect, it 
may be possible to correct for it through 
location and scale normalization. The 
Combat algorithm, readily available 
online, is integrated in various 
multivariate statistical packages.52 
Also, to detect bad samples within a 
good batch, look for poor clustering on 
a PCA, poor correlation within a group, 
and check the box and whisker plot for 
nongaussian distribution. For a more 

systematic treatment, determine the 
Mahalanobis distance to show how 
many standard deviations away a value 
is from the mean value.53

Another useful approach is to use a 
recursive workflow to process the data 
when developing spectrometric-based 
sample class prediction methods. This 
helps the problem of false negatives and 
positives in the analytical data. Several 
feature finding and data alignment 
protocols have been optimized to deal 
with drifting chromatography and 
changes in instrument response. These 
tools perform alignment as part of 
feature extraction, and help address the 
sample variability that can come from 
chromatographic instability from various 
sources. If recursion is not an option, 
and there is too much data to manually 
check the results, consider treating 
missing values as missing as opposed to 
zero within the statistical software. This 
should be a data import feature of all 
multivariate statistical packages. A final 
recommendation is to keep track of all 
available metadata. It may be necessary 
to track down confounding factors 
that complicate data interpretation. A 
reference that goes into greater depth 
about spectrometric experimental design 
and quality control is written by Warwick 
Dunn et al.54

Multivariate statistics, 
significance testing, and 
confirmation
While not an instrument per se, 
multivariate statistics can play a pivotal 
role in identifying food fraud. This is 
the case for geographic authenticity, 
food quality evaluation, or adulteration. 
Whichever type of EMA is being 
evaluated, both biological and reference 
sample data need to be extracted 
to identify the characteristics (and 
underlying compounds) associated with 
acceptability, and which characteristics 
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lead to failure. This was typically done 
manually with a painstaking search 
for what is different between a failed 
sample and reference samples. As more 
failed samples were evaluated and more 
attributes discovered, a targeted list of 
components were added to a library. 
This is the state that many labs find 
themselves in today, combining tests for 
known degradation products along with 
a sensory evaluation. Neither chemical 
nor sensory tests are ideal on their own. 

Agilent Profinder software does both 
mass and retention time alignment. 
Therefore, it can import the median 
retention and mass values, eliminating 
the need to perform a retention time 
alignment step in Agilent Mass Profiler 
Professional (MPP) software when 
the data are imported as a Profinder 
archive file. However, there is still a 
mass alignment option in MPP to 
allow people to import CEF files. When 
working with CEF files, because of the 
slight differences between how mass is 
defined in Profinder compared to MPP, it 
is best to increase the mass alignment 
window in MPP to accommodate 
the differences. To import data files 
from third-party instruments requires 
importing the file as a text file and using 
a targeted workflow. 

There are also online statistical tools 
to perform feature extraction and 
simple chemometric analysis for 
pairwise experiments where there is 
only a single independent variable.55,56 
Fortunately, there are capable statistical 
tools available when an experiment 
contains more than one independent 
variable, and the researcher sees value 
in sophisticated techniques such as data 
clustering, class prediction, multiomic 
analysis, or pathway analysis. In these 
cases, other tools are available that 
can be used for differential analysis 
and visualization of complex data sets. 
Examples are MPP, SPSS from IBM, and 
Progenesis QI from Waters. Realizing 

there were many users interested 
in nontargeted analysis and sample 
profiling but less interested in learning 
how to use a sophisticated statistical 
package, Agilent focused on making 
MPP user friendly and instrument 
centric. As discussed earlier, scientific 
skill and analytical expertise are still 
needed to develop a robust prediction 
method. However, the subsequent step 
of running the class prediction model 
should not be complicated. Classifier 
was developed to automate LC/Q-TOF 
classification model analysis. 

Finally, it is important to independently 
test the statistical power of your findings. 
There are standalone power analysis 
programs used to validate the statistical 
power of an experimental result.51 
Post-hoc power analysis calculates the 
power of the results given the sample 
size tested, where power is defined 
as the probability of rejecting the null 
hypothesis when the specific alternative 
hypothesis is true.

Class prediction/classifier
First, multivariate statistics provide 
separation of the sample classes, 
providing components (entities or 
features) that best discriminate between 
the classes. A sample class prediction 
(SCP) model is then built using these 
predictive components. Explained this 
way, it is understandable that another 
name for sample class prediction is 
supervised learning. 

It is possible to have an entity list that 
seems to separate classes but is not 
capable of building a valid SCP model. 
The case where the model describes a 
random error in the training data instead 
of an underlying relationship in the 
samples is called overfitting the data.57 

To generate the SCP model with the 
highest accuracy of prediction, the 
data quality is crucial. This facilitates 
construction of the right filtering and 

prediction model for the samples. SCP 
will provide the best results when the 
sample data are properly filtered. As 
mentioned in the multivariate statistics 
section, Agilent developed Profinder for 
recursive data extraction to reduce the 
number of false negatives and positives 
that a researcher needs to evaluate. This 
tool works with both scanning and full-
spectrum mass spectral data. Similarly, 
with IR data generated from instruments 
from the 4300 Handheld FTIR to the 
8700 LDIR for chemical imaging, Agilent 
provides optional chemometric and 
prediction modules in the MicroLab 
Expert software.

Multiple prediction models allow 
evaluation and customization since each 
prediction model has traits that make it 
applicable under certain situations:

•	 Partial least squares discrimination 
performs vector analysis to develop 
models that explain the difference 
between the classes. Outliers have 
significant influence on the results, 
and can cause this model to fail. 
It works well in situations where 
the data quality is consistent, and 
a simple model can distinguish 
between the classes. 

•	 Support vector machine works with 
overlapping sample classes. The 
algorithm imagines each sample as 
a point in two- or three-dimensional 
space. When multiple planes exist 
that separate the classes, the 
algorithm maximizes the separation 
between the classes. 

•	 Naïve Bayesian assumes that 
classes are independent from one 
another (called class conditional 
independence). This algorithm can 
work with small entity sets since 
only the variance within each class 
needs to be determined. 
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•	 Decision tree works well when the 
entities are present in all or nearly 
all the samples. It works through a 
series of if-then-else decisions to 
separate the classes. 

•	 Neural network is suited for making 
classifications when there is a 
complex (or unknown) relationship 
between the classes. It is a good 
choice when there are two or more 
classes present in the data.

In general, there are two approaches 
to validate models once they are 
constructed. Leave one out is when a 
data file from each class is left out of the 
training set and is later classified with the 
prediction model. All the files go through 
this process to generate the confusion 
matrix, which shows the applicability 
of the training data with the model. The 
other approach is N-fold, in which the 
training data are randomly assigned to 
N groups. All but one of the groups are 
used to train the model, and the last 
group is used to validate the model. The 
process is repeated N times to generate 
the confusion matrix. Generally, an 
N value of three is enough. Once a model 
is constructed, trained, and validated, it 
should be verified using known samples 
since we need to be able to predict that 
they are completely independent of the 
training data. 

There are numerous steps, and the 
whole process seems rather complex 
for researchers that do not have any 
experience in multivariate statistics. For 
people such as these, there are guided 
workflow options and tools that integrate 
feature finding, significance testing, 
model building, and validation into a 
single process in developing supervised 
learning models.17

Agilent’s goal is to provide solutions 
for customers which includes sample 
preparation products, analytical 
instrumentation, software, workflows, 
and support. This guide is written to aid 
academic researchers evaluate the most 
commonly used techniques for fighting 
food fraud. It covers field-deployable 
spectrometric approaches using portable 
instruments like the Agilent Resolve 
Raman system and 4300 Handheld FTIR. 
It discusses the Agilent 2100 Bioanalyzer 
System as a lab based genomic test for 
accurately identifying fish, even from 
processed samples where the DNA has 
been degraded. The guide also shows 
that identifying geographic origin based 
on trace elemental analysis has never 
been easier with instruments such 
as the matrix-tolerant 7900 ICP-MS 
and the economical 5110 ICP-OES. 
Agilent has good solutions for both 
unit- and high‑resolution MS-based food 
classification.

Agilent has good solutions for both 
unit- and high-resolution MS based 
food classification. An 8890 GC paired 
with the 5977B single quadrupole MS 
can be used to identify volatile and 
semivolatile adulterants with a spectral 
library. The Agilent 6546 LC/QTOF 
is a high-resolution, accurate-mass, 
research instrument for nonvolatile 
contaminants. Agilent provides a sample 
classification workflow solution that 
include MassHunter Profinder software 
for recursive mass spectrometric 
data analysis for both quadrupole and 
Time‑of-Flight-based instruments. 
Curated accurate and unit-mass 
libraries are available for common food 
adulterants and allergens. Agilent offers 
instrument-centric statistical tools like 
Mass Profiler Professional and user 
friendly MassHunter Classifier to provide 
researchers with the ability build their 
own sample class prediction models and 
predict attributes such as sample quality.
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