Trace Detection of Malathion on Corn **Protecting consumer safety with Misa** ### Summary Malathion is an insecticide widely used on a broad spectrum of plant species. Although classified as having low toxicity, ingestion or acute skin exposure can be dangerous to humans. Several studies have implicated chronic exposure to malathion in the development of certain cancers. Maximum residue limits for malathion have been enacted by the regulatory agencies of several countries: the US Food and Drug Administration sets maximum residue limits at 8 g /g in foods, while the EU has a considerably more stringent limit of 20 ng/g. SERS is an accepted method for detection of malathion on fruit and vegetable surfaces. Misa (Metrohm Instant SERS Analyzer), which requires minimal laboratory chemicals and consumables and provides an extremely user-friendly interface, is an excellent SERS solution for trace detection of food adulterants. Misa is a formidable advancement in cost and convenience related to food safety testing and data analysis. ## Configuration #### 2.950.0020 - MISA Advanced Metrohm Instant SERS Analyzer (MISA) is a high performance, portable analyzer system used for rapid, trace level detection / identification of illicit materials, food additives and food contaminants. MISA features a high-efficiency spectrograph equipped with Metrohm's unique Orbital-Raster-Scan (ORS) technology. It has a minimal footprint and extended battery life, perfect for on-site testing or mobile laboratory applications. MISA offers various Laser Class 1 attachments for flexible sampling options. Analyzer operation is available through BlueTooth or USB connectivity. The MISA Advanced package is a complete package that allows the user to perform SERS analyses using Metrohm's nanoparticle solutions and P-SERS strips. The MISA Advanced package includes a MISA Vial Attachment, a P-SERS Attachment, a ASTM Calibration Standard, a USB Mini Cable, a USB Power Supply and MISA Cal software for operating the MISA instrument. A ruggedized protective case is also provided to securely store the instrument and accessories. #### 6.07506.440 - ID Kit - Au NP The ID Kit - Au NP contains the components a Mira / Misa user requires to perform a SERS analysis using gold colloidal solution. The kit contains a disposable spatula, dropper, sample vials and a bottle of gold colloid. ### Introduction This application note describes a simulated test procedure for detecting malathion sprayed on corn kernels. The assay is based on the acquisition of SERS-specific spectra for malathion in acetone extracts using Misa and gold nanoparticles (Au NPs). # Reference spectrum and library creation To establish a reference spectrum, a pure malathion standard at 100 g/mL in ethanol was analyzed using Au NPs. The unique SERS spectrum shown in **Figure 1** can be used to create a library entry for malathion. Figure 1. Standard Au NP SERS reference spectrum of malathion. # **Experiment** A stock solution of malathion in acetone was sprayed onto field corn kernels to yield a range of test samples from 1–20 g/g (concentrations calculated with respect to mass of corn kernels). 0.25 mL of acetone was added to samples in capped glass vials, which were swirled occasionally over a period of 10 minutes to facilitate extraction. At the end of this time, 100 L of the acetone extract was transferred to a second glass vial and dried on a hot plate. The residue was resuspended in 450 L of Au NPs and 50 L of 0.5 mol/L NaCl, the vial was gently shaken to mix, and then immediately placed into the vial attachment on Misa for measurement. Table 1. Experimental parameters | Instrument | | Acquisition | | |----------------------|------------------|-------------|------| | Firmware | 0.9.33 | Laser Power | 5 | | Software | Misa Cal V1.0.15 | Int. Time | 10 s | | Misa Vial Attachment | 6.07505.040 | Averages | 10 | | ID Kit - Au NP | 6.07506.440 | Raster | ON | #### **Results** Overlaid baseline-corrected spectra acquired for malathion recovered from corn kernels reveal high-resolution malathion detection down to 5 g/g (**Figure 2**). Note at these low concentrations, SERS spectra are very sensitive to any other SERS-active moieties present, including organic materials dissolved with the target compound and the SERS substrate itself. **Figure 2.** Overlaid baseline-corrected spectra acquired from Au NPs show detection of malathion on field corn kernels to 5 g/g. ## Field test protocol #### Detection of malathion in the field Place 2–3 pieces of corn in a vial and fill the vial halfway full with acetone, and allow to rest for 5 to 10 minutes, swirling occasionally. With a pipette, remove half of the solvent to a *clean, dry vial* and evaporate to dryness on a hotplate. Fill this vial halfway full with Au NPs and add 2 drops of NaCl solution, then cap and shake the vial gently to mix. Insert into the vial attachment on Misa for measurement. Table 2. Requirements for field test protocol | ID Kit - Au NP | 6.07506.440 | |----------------|----------------------------| | includes: | Gold nanoparticles (Au NP) | | | Scoop | | | Disposable pipettes | | | | | | 2 mL glass vials | |---------------|--------------------------| | Reagents | | | Acetone | | | NaCl solution | 3 g NaCl in 100 mL water | | Test settings | Use ID Kit OP on MISA | ## Conclusion Misa offers a facile, green, and economical method for sensitive detection of malathion sprayed on corn ears. Based on the unoptimized protocol reported in this application note, Misa provides sufficient sensitivity for detecting malathion at concentrations that approximate or exceed the US maximum residue limit for sweet corn. Metrohm AG Ionenstrasse 9100 Herisau mailto:info@metrohm.com