APPLICATION NOTE

Quantitation of pesticide residues in garlic and cumin using an Orbitrap Exploris 120 high-resolution mass spectrometer

Authors: Charles Yang, Ed George, Thermo Fisher Scientific, San Jose, CA

Keywords: Pesticide Explorer, AcquireX Intelligent Data Acquisition, QuEChERS, Orbitrap Exploris 120 Mass Spectrometer, Quantitation, Screening, High-Resolution Accurate Mass (HRAM), Cumin, Garlic, TraceFinder Software

Goal

To develop and pre-validate a multi-residue instrumental method that can be applied for high-throughput quantitation of pesticide residues in garlic and cumin at or below the current legislative requirements. The Thermo Scientific[™] Orbitrap Exploris[™] 120 mass spectrometer was operated in two different workflows: the first workflow using full-scan Data-Independent Acquisition (FS-DIA) for quantitation and confirmation, and the second using a Thermo Scientific[™] AcquireX[™] intelligent data acquisition background exclusion workflow for full spectrum filtering, retrospective analysis, and multi-parameter-based compound identification. These methods were tested for a targeted list of pesticides, with an option for future extension to a larger number of analytes.

Introduction

The demand for quick and simple analysis for a multi-class list of pesticides in large numbers of diverse food samples in agricultural applications is growing year by year. Throughout the world, pesticides are used to control pests that are harmful to crops, humans and animals. These substances can pose a significant health threat and therefore need to be accurately detected at the lowest levels. Government agencies typically set maximum residue levels for pesticides in different products of plant and animal origin at low part per billion (ppb or μ g/kg) levels. The regulations present significant analytical challenges with respect to the low limits of quantification and high number of target analytes.

Currently, routine LC-based methods are typically based on triple quadrupole mass spectrometry. In recent years, Thermo Scientific[™] Orbitrap[™] mass spectrometers have

become available, providing higher confidence in compound identification with quantitative capabilities comparable to triple quadrupole MS/MS. Mass accuracy (typically below 5 ppm) minimizes interferences from co-eluting analytes and matrix co-extractives, and thus reduces the potential for false positive and false negative results. Sample preparation is also a critical part of the workflow. The use of QuEChERS (Quick Easy Cheap, Effective, Rugged, and Safe) methods have been widely adopted for the extraction of pesticide residues from a wide range of food matrices including spices.

This work describes the method performance parameters using the latest benchtop LC - Orbitrap instrument, the Orbitrap Exploris 120 mass spectrometer for the quantitation of a targeted list of pesticides (Table 2) at or below legislative levels (maximum residue levels—MRLs) in both cumin and garlic matrices. The optimized method was verified according to SANTE/12682/2019¹ guidelines and evaluated for compliance with the EU MRL requirements.

Experimental

Consumables

Reagents	Part number
Acetonitrile, UHPLC-MS grade	A9561
Ammonium Formate > 99%	A115-50
Methanol, UHPLC-MS grade	A4581
Formic Acid, extra pure for HPLC	28905
Water, UHPLC-MS grade	W8-1

Consumables	Part number
Thermo Scientific [™] HPLC vial	A4954-010
Thermo Scientific [™] HPLC cap/septum	C4010-60A
Thermo Scientific [™] Accucore [™] aQ 100 x 2.1 mm 2.6 µm	17326-102130

Standards

All pesticide standards were purchased from Agilent Technologies[™]. See results table for the identity of all pesticides investigated for targeted analysis.

Sample preparation

Cumin and garlic were purchased from a local market and analyzed for background levels of pesticides.

Calibration standard preparation

A standard mega mix stock was prepared in 100% Acetonitrile with a final concentration of 1 μ g/mL. A 6-level matrix-matched calibration series, over the range 0.5—100 ng/mL, was prepared by post spiking blank extracts. All levels of the extracted matrix match sample (MMS) calibrants were injected eight times/level while the individual matrix extracted sample (MES, n = 5) calibrants were individually tested for extraction efficiency and reproducibility.

Preparation of blank samples

- 1. Weigh 2 g of each powder spice into a 50 mL conical tube
- Add 15 mL of water with 1% Acetic acid to step 1 and mix for 5 min and let stand at room temperature for 10 min soaking
- 3. Add 15 mL of Acetonitrile to the above mixture
- 4. Mix vigorously for 1 min on a benchtop vortexer
- 5. Add QuEChERS (6 g Magnesium Sulfate, 1.5 g Sodium Acetate P/N S1-15-AOAC-KIT) to the tube and shake by hand vigorously for 1 min
- 6. Place in benchtop vortexer for 5 min
- 7. Centrifuge at 4,500 rpm for 5 min at ambient temperature
- 8. Transfer supernatant layer into 15 mL conical tube
- 9. Aspirate 2 mL from step 8 and filter through a 0.45 μm filter into a HPLC vial

Preparation of matrix match samples (MMS)

- 1. Weigh 2 g of each spice into a 50 mL conical tube
- For MES samples—spike samples of pesticide mega mix at 1 μg/mL for the levels required at 0.5, 1, 5, 10, 50 and 100 ng/mL final; let spiked sample sit at room temperature for 30 min
- 3. For MMS samples go to next step
- 4. Add 15 mL of water with 1% Acetic acid to step 1 and mix for 5 min and sit at room temperature for 10 min soaking
- 5. Add 15 mL of Acetonitrile to the above mixture
- 6. Mix vigorously for 1 min on a benchtop vortexer

- 7. Add QuEChERS salt to the tube and shake by hand vigorously for 1 min
- 8. Place in benchtop vortexer for 5 min
- 9. Centrifuge at 4500 rpm for 5 min at ambient temperature
- 10. Aspirate or pour top layer into 15 mL vial
- 11. Aspirate 2 mL from step 8 and filter through a 0.45 μm filter into a 15 mL conical vial
- 12. Aliquot 1 mL into individual HPLC vials and make calibration levels at 0.5, 1, 5, 10, 50, and 100 ng/mL using mega mix stock

A 1 µL sample was then injected into the LC - Orbitrap Exploris 120 mass spectrometer for analysis.

Instrument analysis

Sample analysis was carried out on a Thermo Scientific[™] Vanquish[™] Flex Binary UHPLC system coupled to an Orbitrap Exploris 120 mass spectrometer.

Separation	
Column	Accucore aQ column, 100 x 2.1 mm,
	2.6 µm
Column temperature	25°C
Flow rate	0.300 mL/min
Injection volume	1 μL
Mobile phase	A: Water with 5 mM ammonium
	formate, 0.1% formic acid
	B: Methanol with 5 mM ammonium
	formate, 0.1% formic acid
Gradient	Table 1

Table 1. UHPLC gradient program.

Time [Min]	Flow Rate [mL/min]	A %	В%	Curve
0.0	0.300	98	2	5
1.0	0.300	98	2	5
2.0	0.300	50	50	5
9.0	0.300	2	98	5
12.0	0.300	2	98	5
12.1	0.300	98	2	5
15.0	0.300	98	2	5

Orbitrap Exploris 120	MS Settings
Spray voltage	3.5 kV
Sheath gas	30 arb
Aux gas	6 arb
Sweep gas	1 arb
Capillary temp.	290°C
Vaporizer temp.	350°C
Ion polarity	Pos
Full Scan mass range	<i>m/z</i> 100–1100
Full Scan resolution	60,000
DIA resolution	15,000
Q1 isolation	<i>m/z</i> 200
ddMS ²	15,000
HCD collision energy	Stepped nCE 18 ,35, 60
RF Lens	60

Data acquisition and processing

Data were acquired and processed using Thermo Scientific[™] TraceFinder[™] software to ensure full automation from instrument setup to raw data collection, processing, and reporting.

Experiment 1: Data acquired from FS-DIA were analyzed with an extraction mass tolerance of ±5 ppm for both precursor and product ions. Analytes were quantified based on full scan precursor accurate mass. In addition, confirmation of target pesticides was performed by DIA fragment matching using a curated high-resolution spectral library.

Experiment 2: The samples were then analyzed for other contaminants, using a new 'data-mining' software function called AcquireX intelligent data acquisition workflow. This functionality has several workflows. One such workflow is called Background Subtraction and uses a blank matrix to automatically generate an exclusion list of matrix coextractives prior to acquisition, while using a targeted MS² inclusion list with retention times for added specificity for the targeted pesticides. Data were extracted with a mass tolerance of 5 ppm for both precursor and product ions of targeted pesticides. Analytes were first quantified using the full scan precursor mass trace and then identified using a targeted list of pesticides from a compound database and matched with a spectral library. All data were evaluated against SANTE Guidelines criteria using EC SANTE/12682/2019.1

Results and discussion

Experiment 1: Simplified in-house validation for screening and quantitative methods was carried out for targeted pesticides. The linearity of the calibration curves for MMS was assessed over the range from 0.5 to 100 ng/mL to demonstrate the potential of the method for quantitative analysis. Method selectivity and sensitivity was evaluated by comparing the blanks (garlic and cumin) and MMS (garlic and cumin) (respectively). The evaluation was based on accurate mass of the analyte at the specified retention time window (±0.1 min). Full MS scan acquisition-based quantitation using mono-isotopic match, presence of fragment ions (FI), and a high resolution curated pesticide spectral library match (LS) were additionally applied for identification according to References 1 and 2. Acceptance values were set ≤5 ppm for mass accuracy (FS, DIA and ddMS²), ±0.1 min for retention time, reproducibility at limit

of quantitation (LOQ) RSD ≤15% and limit of detection (LOD) between 15–20% RSD with at least one fragment ion (FI) present and ≥50% for LS matching, however reporting standards were set at $\geq 60\%$ and a R² ≥ 0.9800 . The established values are shown in Table 2 for cumin and Table 3 for garlic. Figure 1 shows some select pesticides across the retention time range of the method (1–10 min); while Figure 2 demonstrates sufficient scans across each peak for accurate guantitation. Recoveries were checked for both cumin (Table 2) and garlic (Table 3) to confirm the extraction protocol was universal for both matrices at 3 different concentration levels (1.3, 6.6, and 13.3 µg/kg) and n = 5 replicates/concentration. The results show excellent recoveries between 70–120%. Some compounds in 60% range showed excellent precision between replicates and thus are allowable under SANTE guidance, Figure 3A and 3B (respectively).

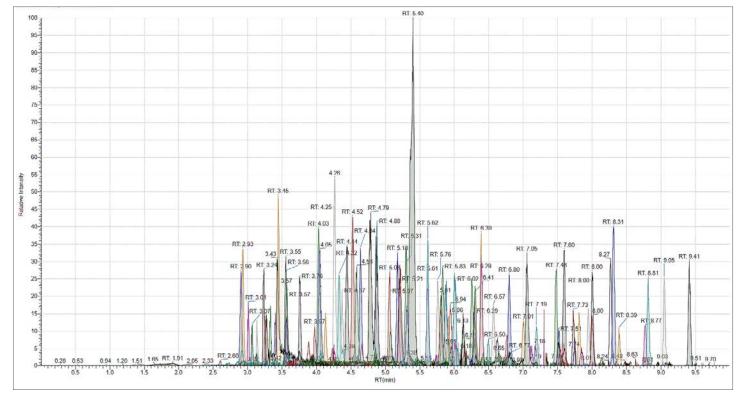


Figure 1. Robust LC-MS shows a 10 ppb spiked pesticides in garlic (MMS) across the retention time range of the method (1–10 min) with extracted mass tolerance of 5 ppm.

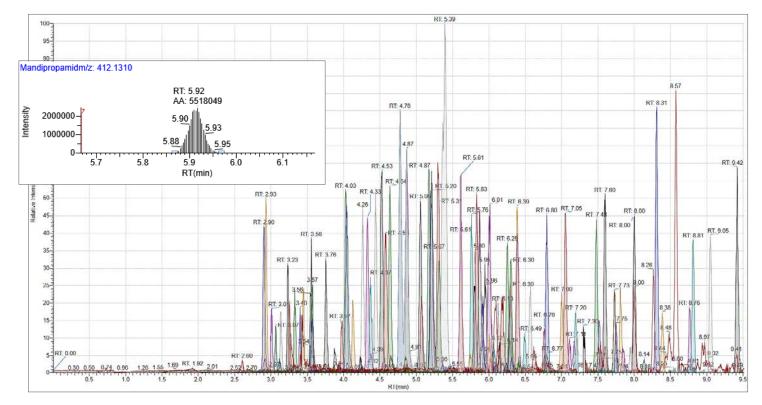


Figure 2. Chromatogram of all pesticides in 15 min in cumin MMS spiked at 10 ppb. The peak highlighted at 5.92 min is mandipropamid, showing over 11 scans across the full scan quantitation ion used for the analysis.

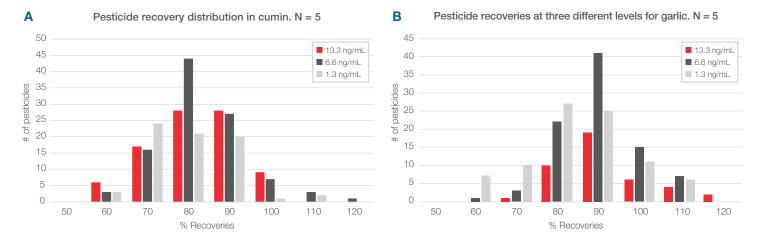


Figure 3. Pesticide recoveries in cumin and garlic at 1.3, 6.6 and 13.3 ng/mL for n = 5 replicates.

Table 2. Table 2: Results for cumin in matrix match samples.

Compound	RT	R ²	LOD (µg/kg)	%RSD	LOQ (µg/kg)	%RSD	<i>m/z</i> (Delta)
Acetamiprid	3.57	0.9958	0.5	5.6	1.0	7.9	-0.5084
Ametryn	5.21	0.9998	0.5	4.0	1.0	3.4	-1.0413
Aminocarb	2.92	0.9912	0.5	4.5	1.0	2.1	-0.7369
Azoxystrobin	5.61	0.9988	0.5	10.9	1.0	6.8	-1.2467
Bupirimate	6.38	0.9995	0.5	9.4	1.0	10.2	-0.7869
Buprofezin	8.00	0.9997	0.5	10.9	1.0	6.3	-0.9227
Butafenacil (M+NH ₄)	6.28	0.9995	0.5	12.1	1.0	7.1	-1.2822
Carboxin	4.63	0.9999	0.5	4.0	1.0	3.7	-0.6692
Chloroxuron	6.39	0.9997	0.5	7.1	1.0	5.5	-0.9520
Difenoconazole	7.63	0.9995	0.5	19.5	1.0	12.1	-0.3241
Dimethoate	3.56	0.9940	0.5	8.7	1.0	6.3	-0.9419
Diniconazole	7.51	0.9995	0.5	8.7	1.0	5.9	-0.0527
Epoxiconazole	6.57	0.9998	0.5	4.3	1.0	4.4	-0.7599
Fenamidone	5.76	0.9989	0.5	11.4	1.0	4.6	-0.9582
Fenpyroximate	8.81	0.9997	0.5	3.6	1.0	5.2	0.2121
Fluometuron	4.87	0.9997	0.5	7.4	1.0	4.9	-1.5277
Fluoxastrobin	6.29	0.9997	0.5	4.2	1.0	5.9	-1.1107
Furalaxyl	5.61	0.9989	0.5	7.6	1.0	5.3	-1.4410
Hexythiazox	8.39	0.9997	0.5	8.6	1.0	7.4	-0.2012
Isoproturon	5.17	0.9995	0.5	4.9	1.0	3.3	-1.2755
Mandipropamid	5.90	0.9991	0.5	7.5	1.0	6.3	-0.7357
Mefenacet	6.25	0.9997	0.5	3.4	1.0	3.3	-1.0224
Methabenzthiazuron	5.31	0.9994	0.5	5.7	1.0	4.5	-1.6961
Methamidophos	1.90	0.9998	0.5	4.0	1.0	4.6	-1.4253
Methoprotryne	5.20	0.9998	0.5	6.2	1.0	2.8	-0.5563
Metribuzin	4.37	0.9997	0.5	7.4	1.0	5.1	-1.5369
Monocrotophos	3.25	0.9995	0.5	11.3	1.0	9.0	-1.1697
Monolinuron	4.86	0.9995	0.5	11.7	1.0	9.1	-1.5527
Nitenpyram	3.14	0.9992	0.5	5.9	1.0	6.0	-0.7434
Omethoate	2.89	0.9992	0.5	3.5	1.0	2.6	0.4249
Penconazole	7.00	0.9998	0.5	6.4	1.0	6.2	-1.0242
Pencycuron	7.48	0.9996	0.5	7.2	1.0	5.1	-0.9575
Picoxystrobin	6.76	0.9996	0.5	11.7	1.0	3.2	-0.9320
Pirimicarb	4.04	0.9996	0.5	7.0	1.0	3.4	-0.6881
Prometon	4.76	0.9998	0.5	1.4	1.0	2.7	-0.5873
Prometryn	6.00	0.9989	0.5	20.0	1.0	4.6	-1.2734
Pyracarbolid	4.52	0.9998	0.5	3.2	1.0	4.2	-0.6584
Pyridaben	9.05	0.9997	0.5	9.5	1.0	5.0	-1.0661
Pyriproxyfen	8.30	0.9998	0.5	3.5	1.0	3.3	-1.0473
Secbumeton	4.93	0.9998	0.5	4.4	1.0	3.1	-0.9921
Siduron	5.80	0.9983	0.5	11.9	1.0	6.7	-0.7823
Simetryn	4.57	0.9998	0.5	2.5	1.0	2.7	-1.2065
Spirodiclofen	8.77	0.9997	0.5	10.5	1.0	7.1	-0.7003
Spirotetramat	6.30	0.9997	0.5	6.2	1.0	6.9	-1.1484
Tebufenozide (M-C ₄ H ₇)	6.79	0.9996	0.5	9.5	1.0	7.8	-0.9949
Tebufenpyrad	8.00	0.9995	0.5	20.0	1.0	12.6	-0.3030

Table 2. Results for cumin in matrix match samples. (continued)

Compound	RT	R ²	LOD (µg/kg)	%RSD	LOQ (µg/kg)	%RSD	<i>m/z</i> (Delta)
Tebuthiuron	4.45	0.9997	0.5	4.7	1.0	4.0	-0.6862
Terbumeton	4.95	0.9997	0.5	3.3	1.0	3.2	-0.3174
Terbutryn	5.86	0.9987	0.5	7.8	1.0	3.7	-0.9583
Thiabendazole	3.55	0.9950	0.5	4.0	1.0	7.0	-1.3843
Thiacloprid	3.74	0.9995	0.5	4.0	1.0	3.6	-0.9874
Triadimefon	6.12	0.9992	0.5	12.2	1.0	11.8	-0.0261
Tricyclazole	4.04	0.9994	0.5	4.3	1.0	3.4	-0.5886
Trifloxystrobin	7.59	0.9998	0.5	6.1	1.0	6.0	-0.8379
Triflumizole	7.81	0.9995	0.5	13.1	1.0	7.8	-1.0148
Zoxamide	7.19	0.9996	0.5	7.7	1.0	8.3	-0.6911
Bifenazate	6.29	0.9995	1.0	13.9	1.0	13.9	-2.4550
Carbofuran	4.32	0.9988	1.0	2.3	1.0	2.3	-1.2252
Cycluron	5.29	0.9988	1.0	14.8	1.0	14.8	-0.4284
Hexaconazole	7.21	0.9994	1.0	14.6	1.0	14.6	0.1396
Metalaxyl	5.05	0.9986	1.0	6.2	1.0	6.2	-0.5540
Spinetoram 1	7.84	0.9989	1.0	11.8	1.0	11.8	-2.9761
Tetraconazole	6.49	0.9995	1.0	9.5	1.0	9.5	-0.9881
Imidacloprid	3.40	0.9898	0.5	18.6	5.0	12.5	-1.5872
Acephate	2.73	0.9995	1.0	15.6	5.0	3.0	-0.3301
Benalaxyl	7.05	0.9991	1.0	13.0	5.0	3.7	-0.5327
Carbendazim	3.33	0.9944	1.0	19.7	5.0	7.1	-0.7061
Carbetamide	4.15	0.9993	1.0	20.2	5.0	3.2	-1.8131
Clethodim	7.74	0.9991	1.0	15.3	5.0	5.3	0.4107
Dinotefuran	3.00	0.9829	1.0	15.8	5.0	13.4	-1.0205
Fenazaquin	9.42	0.9993	1.0	15.9	5.0	1.9	-1.4203
Fenuron	3.57	0.9893	1.0	17.8	5.0	6.5	-0.9612
Imazalil	5.07	0.9991	1.0	7.3	5.0	1.5	-0.5035
Ipconazole	7.73	0.9996	1.0	9.3	5.0	2.1	-0.3943
Oxadixyl	3.98	0.9981	1.0	12.1	5.0	6.6	-2.0355
Benzoximate	7.33	0.9941	5.0	12.9	5.0	12.9	-0.9921
Cyromazine	2.60	0.9957	5.0	2.4	5.0	2.4	-0.7102
Dimethomorph	6.00	0.9983	5.0	12.4	5.0	12.4	-1.4102
Fenpropimorph	5.82	0.9961	5.0	3.4	5.0	3.4	-0.6058
Flusilazole	6.75	0.9994	5.0	5.8	5.0	5.8	-1.2709
Furathiocarb	7.94	0.9946	5.0	1.7	5.0	1.7	1.5751
Hydramethylnon	7.86	0.9877	5.0	4.5	5.0	4.5	1.0364
Piperonyl-butoxide	8.13	0.9987	5.0	7.7	5.0	7.7	-0.2175
Propiconazole	7.11	0.9993	5.0	5.7	5.0	5.7	-1.4365
Spiroxamine	6.18	0.9987	5.0	7.2	5.0	7.2	-1.7801
Thiamethoxam	3.23	0.9958	5.0	8.3	5.0	8.3	-0.6603
Triadimenol	6.31	0.9985	5.0	5.1	5.0	5.1	-1.0379
Methoxyfenozide	6.14	0.9947	1.0	17.0	10.0	11.5	-2.1080
Chlorantraniliprole	5.36	0.9987	5.0	11.8	10.0	5.2	-0.4684
Cyproconazole	6.07	0.9968	5.0	15.8	10.0	8.7	-0.4033
Tebufenozide	6.79	0.9570	10.0	8.8	10.0	8.8	0.7806

Table 3. Results for garlic in matrix match samples.

Compound	RT	R ²	LOD (µg/kg)	%RSD	LOQ (µg/kg)	%RSD	<i>m/z</i> (Delta)
Acephate	2.73	0.9988	5.0	10.8	5.0	10.8	-0.8276
Acetamiprid	3.57	0.9765	5.0	3.0	5.0	3.0	-0.6452
Ametryn	5.21	0.9934	0.5	2.0	1.0	1.8	-0.2387
Aminocarb	2.92	0.9951	5.0	16.3	10.0	14.4	-1.4665
Azoxystrobin	5.61	0.9962	0.5	3.2	1.0	1.4	-0.1139
Benalaxyl	7.05	0.9995	0.5	2.7	1.0	1.6	0.1222
Benzoximate	7.33	0.9986	1.0	6.7	1.0	6.7	-0.1539
Bifenazate	6.29	0.9988	0.5	3.5	1.0	1.7	-1.2390
Bitertanol	7.35	0.9994	0.5	6.4	1.0	3.5	2.3752
Bupirimate	6.38	0.9995	0.5	2.8	0.5	2.8	-0.0171
Buprofezin	8.00	0.9990	0.5	2.6	0.5	2.6	-0.2250
Butafenacil (M+NH₄)	6.28	0.9996	0.5	3.3	0.5	3.3	1.5084
Carbetamide	4.15	0.9890	5.0	1.3	5.0	1.3	-0.9122
Carbofuran	4.32	0.9880	5.0	2.6	5.0	2.6	-1.1565
Carboxin	4.63	0.9930	0.5	15.5	5.0	3.4	-0.6046
Chlorantraniliprole	5.36	0.9892	5.0	3.2	5.0	3.2	0.3547
Chloroxuron	6.39	0.9997	0.5	3.8	0.5	3.8	-0.6375
Clethodim	7.74	0.9992	0.5	4.6	0.5	4.6	-1.3688
Clothianidin	3.44	0.9592	5.0	6.8	5.0	6.8	-1.3778
Cycluron	5.29	0.9941	5.0	8.8	5.0	8.8	0.0312
Cyproconazole	6.07	0.9976	0.5	4.2	1.0	2.4	0.4325
Cyromazine	2.60	0.9969	0.5	14.8	1.0	7.6	-3.2670
Difenoconazole	7.63	0.9989	0.5	4.6	1.0	3.3	0.1268
Dimethoate	3.56	0.9844	5.0	3.3	5.0	3.3	-0.9419
Dimethomorph	6.00	0.9976	0.5	3.0	1.0	2.4	-0.4667
Diniconazole	7.51	0.9981	0.5	7.6	1.0	3.6	-0.0527
Dinotefuran	3.00	0.9928	1.0	6.7	1.0	6.7	0.1815
Epoxiconazole	6.57	0.9997	0.5	6.5	1.0	6.9	-0.4826
Fenamidone	5.76	0.9966	0.5	2.5	1.0	1.7	0.3129
Fenazaquin	9.42	0.9995	0.5	6.3	1.0	6.0	0.1693
Fenbuconazole	6.66	0.9976	50.0	4.1	50.0	4.1	0.3916
Fenpropimorph	5.82	0.9978	0.5	3.6	1.0	1.7	-0.1043
Fenpyroximate	8.81	0.9992	0.5	4.7	0.5	4.7	-0.2939
Fenuron	3.57	0.9799	5.0	2.9	5.0	2.9	-0.9612
Fluometuron	4.87	0.9959	1.0	16.7	5.0	4.9	0.0434
Fluoxastrobin	6.29	0.9992	0.5	3.4	0.5	3.4	-0.5789
Flusilazole	6.75	0.9974	1.0	2.9	1.0	2.9	0.9495
Furalaxyl	5.61	0.9963	0.5	2.6	0.5	2.6	-0.5319
Furathiocarb	7.94	0.9998	50.0	0.3	50.0	0.3	-0.4160
Hexaconazole	7.21	0.9998	0.5	3.9	0.5	3.9	-1.2207
Hexythiazox	8.39	0.9997	0.5	1.4	0.5	1.4	-0.1148
Hydramethylnon	7.86	0.9960	1.0	18.0	5.0	6.9	0.8515
Imazalil	5.07	0.9916	5.0	10.3	10.0	8.8	-1.6335
Imidacloprid	3.40	0.9512	5.0	7.4	5.0	7.4	-0.7529
Ipconazole	7.73	0.9993	0.5	3.9	0.5	3.9	-1.1249
Isoproturon	5.17	0.9938	0.5	12.6	1.0	3.1	-1.1249
Mandipropamid	5.90	0.9938	0.5	3.2	0.5	3.2	-0.3655

Table 3. Results for garlic in matrix match samples. (continued)

Compound	RT	R ²	LOD (µg/kg)	%RSD	LOQ (µg/kg)	%RSD	<i>m/z</i> (Delta)
Mefenacet	6.25	0.9987	0.5	3.3	0.5	3.3	-0.0021
Metalaxyl	5.05	0.9919	5.0	16.0	10.0	7.1	-1.2076
Methabenzthiazuron	5.31	0.9938	0.5	2.5	1.0	2.0	-0.5967
Methamidophos	1.90	0.9990	5.0	0.9	10.0	1.4	-0.9955
Methoprotryne	5.20	0.9938	0.5	3.3	5.0	3.7	-0.2199
Methoxyfenozide	6.14	0.9983	0.5	5.6	1.0	8.1	0.1237
Metribuzin	4.37	0.9890	1.0	10.5	5.0	2.5	-0.4019
Mexacarbate	3.54	0.9746	5.0	9.6	5.0	9.6	-0.6659
Monolinuron	4.86	0.9947	5.0	17.2	10.0	8.8	-1.0561
Nitenpyram	3.14	0.9977	0.5	18.2	5.0	11.9	-0.9685
Omethoate	2.89	0.9994	0.5	7.3	1.0	2.2	-0.2881
Oxadixyl	3.98	0.9870	5.0	1.7	5.0	1.7	-0.1769
Penconazole	7.00	0.9998	0.5	2.5	0.5	2.5	1.0170
Pencycuron	7.48	0.9992	0.5	2.1	0.5	2.1	-0.7721
Picoxystrobin	6.76	0.9993	1.0	5.1	1.0	5.1	2.1354
Piperonyl-butoxide	8.13	0.9988	5.0	2.8	5.0	2.8	-0.8172
Pirimicarb	4.04	0.9895	0.5	15.9	5.0	1.1	-1.3899
Prochloraz	7.26	0.9993	1.0	4.1	1.0	4.1	-0.6600
Prometon	4.76	0.9947	0.5	7.2	0.5	7.2	-0.3174
Prometryn	6.00	0.9982	0.5	2.8	1.0	1.3	0.2390
Propiconazole	7.11	0.9996	0.5	6.2	1.0	4.8	-0.0983
Pyracarbolid	4.52	0.9927	0.5	11.1	1.0	4.9	-0.3087
Pyraclostrobin	7.31	0.9992	0.5	2.9	0.5	2.9	-0.7722
Pyridaben	9.05	0.9996	0.5	4.3	1.0	4.5	0.6890
Pyrimethanil	5.80	0.9967	0.5	2.0	1.0	1.4	-0.0508
Pyriproxyfen	8.30	0.9994	0.5	1.7	0.5	1.7	-0.3842
Secbumeton	4.93	0.9945	5.0	16.3	10.0	7.9	-0.7222
Siduron	5.80	0.9974	0.5	2.9	1.0	2.0	0.1993
Simetryn	4.57	0.9933	1.0	19.8	5.0	3.1	1.0027
Spinetoram 1	7.84	0.9986	0.5	4.9	1.0	3.2	-1.0191
Spirodiclofen	8.77	0.9968	0.5	2.2	1.0	2.3	-0.1807
Spirotetramat	6.30	0.9995	0.5	2.9	0.5	2.9	-0.1698
Spiroxamine	6.18	0.9991	0.5	12.2	1.0	3.4	-0.0407
Tebufenozide	6.79	0.9995	1.0	3.5	5.0	4.0	-0.0834
Tebufenozide (M-C ₄ H ₇)	6.79	0.9997	0.5	2.2	1.0	1.0	0.2374
Tebufenpyrad	8.00	0.9997	0.5	2.7	1.0	1.3	0.4276
Tebuthiuron	4.45	0.9915	0.5	6.8	1.0	4.5	0.3128
Terbumeton	4.95	0.9944	5.0	16.4	10.0	7.7	-1.5993
Terbutryn	5.86	0.9978	1.0	1.5	5.0	1.3	-0.5802
Tetraconazole	6.49	0.9994	0.5	8.6	1.0	2.8	-0.9881
Thiabendazole	3.55	0.9793	1.0	18.4	5.0	3.1	-0.0249
Thiacloprid	3.74	0.9817	5.0	2.2	5.0	2.2	0.0981
Triadimefon	6.12	0.9984	0.5	3.4	1.0	2.9	-0.2337
Triadimenol	6.31	0.9985	1.0	7.1	1.0	7.1	-1.7593
Tricyclazole	4.04	0.9880	0.5	18.7	5.0	1.6	-0.8294
Trifloxystrobin	7.59	0.9990	0.5	4.4	0.5	4.4	-0.1666
Triflumizole	7.81	0.9987	0.5	2.7	0.5	2.7	0.2197
Zoxamide	7.19	0.9993	0.5	3.9	0.5	3.9	0.7620

Experiment 2: The implementation of the AcquireX Background Exclusion workflow also helps in identification of targeted and unknown contaminates using a unique routine to automatically create an exclusion list based on LC-MS analysis of the matrix blank. The instrument method is automatically updated with the exclusion list, so when subsequent samples are analyzed, MS² experiments are not performed on matrix background signals. As a result, more cycle time is spent on triggering MS² on the relevant ions of interest. This is groundbreaking for data processing because it minimizes false-positives and -negatives. TraceFinder software can efficiently process these new complex data files and extract results for both targeted quantitation and unknown screening workflows. TraceFinder software can easily go from a targeted quantitation workflow to unknown screening workflow by simply checking a box (Figure 4). The software can quickly utilize multi-search options, from custom spectral libraries to the multiple Thermo Scientific[™] mzCloud[™] curated spectra libraries to online ChemSpider[™] database searching, utilizing the Exhaustive Search feature, which can move from one search option to the next to make sure the best results are displayed from each to search criteria (Figure 5).

Figure 4. TraceFinder software is easily configurable to perform either a targeted quantitative or unknown screening workflows.

File Method View Tools Help	
🗋 💕 🚽 🛃 📘 🖶 Ta 🖡 Ta	I- W + I I II E
Method Development 🔹 👎	Method View - CuminGarlic_PE_Ax_FSddMS2_V1*
 Method View 	Calibration file last used: [Local] - PesticideSpices\Pesticide Cumin Ax MMS_MES_012721
Acquisition	Mass Tolerance: 5.00 🚊 🔿 MMU 💿 PPM
Quantitation	Threshold Override
Processing	Unknown Screening
Compounds	Include Unknown Screening
QAQC	
Unknown Screening	
Processing	

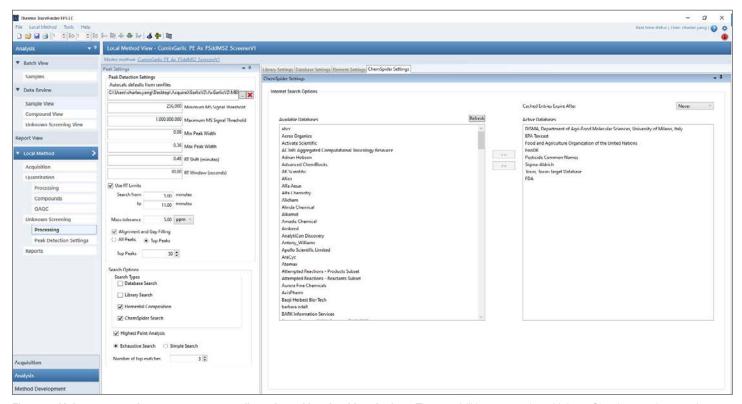


Figure 5. Unknown search parameters are easily activated by checking the box. The capabilities to search multiple mzCloud curated spectral libraries gives you the confidence of the exact match or online targeted database in ChemSpider.

Figure 6 depicts the quick and easy data review section of the quantitation workflow with sortable grids and informative information at the bottom. The highlighted compound Fenpyroximate is shown as an example of consistent mass accuracy of the Orbitrap Exploris 120 mass spectrometer. Only those "not identified" targets from the previous section will be moved down into the unknown section to be identified further using the different online database or local databases which were not used prior.

Thermo TraceFinder EFS LC																						-	Ø >
File View Tools Help		100																			Real time stat	tus User: charles.y	yang l 😧
		A REAL PROPERTY AND	Contractor of			1000 A 110																	_
Analysis 🔫	P Data Review - Pest	licide Cun	nin MN	IS_MES_	010721	[Ouan]																	
 Ratch View 	Compounds P Compound	RT	0 ×	Sample R		Filename	Sample Type	0 Height	a Area	Excluded) The	(c)	%Diff	SIRSD	% CV	m/z (Delta)	RT Delta	n	a Library	Score (%) 👍	m/z (Apex)	Lib Match Nam	• ⁰
Samples	bi •	<u>A</u> a			<u>A</u>	ði •	<u>a</u> •	M +	A +		<u>A</u> a	A	A +	<u>A</u> +	M +	M +	A +		-		= 64 +	84	-
▼ Data Review 3	37 Fenpropimorph 38 Fenpyroximate	5.82 8.81		16 64 11 65	2	MES_1ppb_03 MES_1ppb_04	Chik Std Chik Std	N/F	N/F N/F		0.133	N/F N/F	NaN NaN	0.00	0.00	N/F N/F	N/F N/F		N/A N/A		64 N/F 65 N/F	N/A N/A	
Sample View	39 Fenuron	3.57		H 66	1	MES_1ppb_05	Chk Std	N/F	N/F		0.133	N/F	NaN	0.00	0.00	N/F	N/F		N/A		66 N/F	N/A	
Compound View	40 Fluszinam 41 Flubendiamide	7.96 6.72		+ 67 H 68	2	MES_Sppb_01 MES_Sppb_02	Chk Std Chk Std	303929 273420	493714 527461		0.660	0.597	-10.26	4.20	5.14 5.14	.5735 (ppm) .7903 (ppm)	0.00		91		67 472.2077 68 422.2078	Fenpytoximate	
Report view	42 Flubenzimine	7.74		# 69	2	MES_Sppb_02 MES_Sppb_03	Chik Std	352162	527461		0.660	0.617	-6.57	4.20	5.14	-1.4504 (ppm)	0.00		97		69 422,2068	Fenpyroximate Fenpyroximate	
Nepolit view	43 Fluometuron	4.87	1000	11 70	2		Chk Std	2/6989	515928	10	0.650		-6.97	4.20	5.14	4385 (ppm)	0.00		91		10 422.2072	Fenpyroximate	
Local Method	44 Fluoxastrobin	6.29		8 71	2		Chk Std	271884	463104		0.660	0.562	-14.78	4.20	5.14	.6457 (ppm)	0.00		97		71 422.2077	Fenpyroximate	
	45 Flusilazole	6.75		0 72	2	MES_10ppb_01	Chk Std	400468	960700	13	1.330	1.040	-21.23	5.90	6.53	.5012 (ppm)	0.01		95		72 422.2076	Fenpyroximate	
Acquisition	46 Furalaxyt 47 Furathiocarb	5.61		a 73		MES_10ppb_02	Chk Std	598248	1070940	10	1.330	1.155	-13.16	5.90	6.53	1.0794 (ppm)	0.00		100		73 422.2079	Fenpyroximate	
Quantitation	48 Hexaconazole	7.21		¥ 74	2	MES_10ppb_03	Chk Std	669376	1156622		1.330	1.238	-6.88	5.90	6.53	.1398 (ppm)	0.00	•	91		74 422.2075	Fenpyroximate	
Processing	49 Hexythiazox	8.39		iii 75	1	MES_10ppb_01	Chk Std	528249	1060511	13	1.330	1.145	-13.92	5.90	6.53	0771 (ppm)	0.00	•	100		75 422.2074	Fenpyroximate	
Compounds	50 Hydramethylnon	7.06		1 76		MES_10ppb_05		560372	1067496		1.330	1.152	-13,41	5.90	6.53	2216 (ppm)	0.00	•	97		76 422.2073	Fenpyroximate	
QAQC	51 Imazalil	5.07		* 77		MES_S0ppb_01		2816659	5653227		0.000	5.622	-15.59	2.07	2.11	2939 (ppm)	0,01		100		77 422.2073	Fenpyroximate	
Reports	52 Imidacioprid	3.40		₩ 78 ₩ 79	× ×	MES_S0ppb_02		2735515 2944184	5624681		6.660	5.594	-16.01	2.07	2.11	0048 (ppm)	0.00		100		78 422,2074	Fenpytoximate	
toports	53 Ipconazole	7.73		H 79 H 80	2	MES_S0ppb_03 MES_S0ppb_04		2942604	5712848 5932363		6.660	5.884	-11.51	2.07	2.11	.1398 (ppm) .6457 (ppm)	0.00		100		79 422.2075 00 422.2077	Fenpyroximate	
	54 Isoproturon	5.17		H 81	2	MES_SUPPO_04 MES_SUPPO_05		2942004	5/4825/				-14.20	2.07	2.11	.0437 (ppm) .4289 (ppm)	0.00		100		81 422.2076	Fenpyroximate	
	55 Mandiproparnid 56 Mefenacet	5.90		* 12	1	MES_100ppb_0		5727551	11499522			11.320		1.31	1.32	1.0071 (ppm)	0.00		100		82 422.2079	Fenpyroximate	
	57 Metalaxyl	6.25 5.05		* 83	2	MES_100ppb_0		5713260	11301064			11.127		1.31	1.32	.4299 (ppm)	0.00	1.2	100		83 422.2076	Fenpyroximate	
	58 Methabenzthiazun			8 M		MES 100ppb 0		5539564	11624657			11.442		1.31	1.32	.0675 (ppm)	0.00		100		84 422.2075	Fenpyroximate	
	59 Methamidophos	1.90	5	H 85	V	MES_100ppb_0		5950707	11700400			11.516		1.31	1.32	.2121 (ppm)	0.00		100		85 422,2075	Fenpyroximate	
	Compound Details	-						10.00									0.00		1.000				÷ 9
	Ouan Peak 🗸 🗸						1	F X Fra	gments	~						∓ ×	Library Match	s - 24					∓ ×
	Fonpyroximatem/z 4	22 2074						1	All Fragment	5		Mi	Manum # of I	regments m	eded. 1		alli Fenp	yroximate			e C24H27N3O4 Sco		
	a construction of the second								#1-3661451	P:F	TMG + cl	CI Full	152 400 000	0@hed37.63	[50.0000-5.	35.1000)	a #2: Fenp	marinate		184 F.FTM3	c ESI Full ms2 400.0	1000@hcd37.67 [50	0.0000-53
					1.8.81	727					6.0E6-	1					a az reig	in consideration of the second	-	100 g			
					N: INF				#2:231.1004										rent	50			
	€ 4000000-				1				#3:215.1055		4.006								per	1.1.	214.0981	366.1444	
	3000000								#4: 214.0976		2.0E6-	1	*4			ſ			5	07.11110	200 300	400 5	sho
	2000000-				$ \rangle$				#5: 138.0663	100	0-1	and the local division of the local divisio division of the local division of the local	the second second	duning	and the second second	=1)							
	1000000-					0.0		1		E .	1.566								890	3193 F.FIMS	+ p ESI d Full ms2 4;	22.0020040.00[1	05.00-43
Acquisition	ي ال	56	8.7		8.8	89	y.o	-			1.0E6	15	84						brary	500 E	367 14	482 366 144	8
Analysis	m/z: 422.2074				RT(min)			10			0	1.1.1.		#3					5	Eo	214.0975		
Martined Development		t RT: 8.77 ight: 48246		RT: 8.85				-				150	200	250 m/z	300	350				100	200 300 m/z	400 5	500
Method Development	Pares 10141727 Pte	rymi 40240	er repis	CI 10.00				Y													1112		

Figure 6. A quick overview of Fenpyroximate quantitation with library scoring of 100% and Δ ppm of \leq 1 ppm at 10 ppb concentration level shown above.

In Figure 7, elemental composition and the ChemSpider database were used to identify and label with the probable compound(s) in question. For cumin, an unknown was identified as elaidolinolenic acid (Figure 8).

A unique compound called 1-Dodecyl-2-pyrrolidinone was tentatively identified and more research will need to be done on the compound to confirm its identity (Figure 9). For garlic samples, several compounds were identified; (e.g., octhilinone which is a fungicide and antibacterial agent used for treatment of canker and other fungal and bacterial diseases in fruit trees). Proxan is a non-steroidal anti-inflammatory drug used to treat pain or inflammation in humans which could have found its way through the water supply to the farm. Both compounds were identified through ChemSpider but further research will need to be done to confirm them (Figure 10 and 11 respectively).

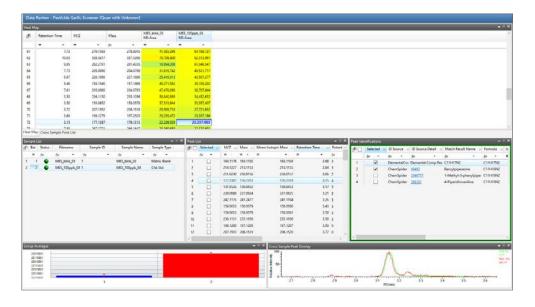


Figure 7. Quick overview of unknown screening where identification is quickly listed. Here is a highlighted example of benzylpiperazine found in garlic sample which was not targeted.

Figure 8. Quick overview of unknown screening which found an unknown and identified as Elaidolinolenic acid.

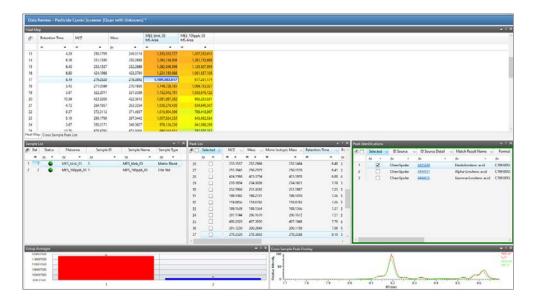
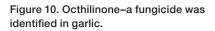
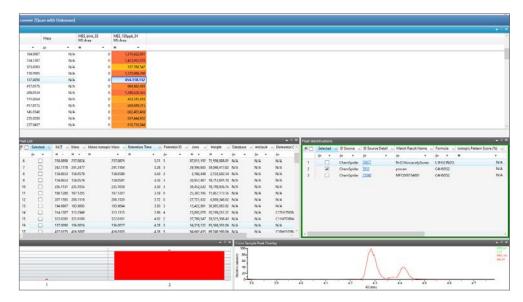
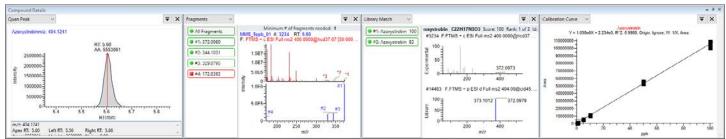



Figure 9. A unique compound called 1-Dodecyl-2-pyrrolidinone was also identified.

	142															
r.	Retention Time	M/7		Mass	MES_bHrk_03 MS Area	MES_100ppb_0 MS Area	3									
	-			p -		-										
١		9.72	282.2792	N/A	0	2,000,51	2.904									
2		7.26	119.0056	118.0782	702,395,574	753.8										
		\$.30	145,0960	148.0886	670,714,868	611.50										
1		5.00	145.0941	148,0887		722,64										
		5.08	163.1117	162,1043		2,275,40										
		7.26	189,1439	188,1564		1,506.40										
		\$.39	199.1151	198,1078		766,71										
		7.26	199.1482	998.2731		701,91										
		7.26	207.1744	206.1670		1 001 30										
		6.11	218,1510	217.1466		1,792.23										
		6.16	231,1380	230.2688		1.261.13										
		5.42	233.7537	232,2956 the inter		1,129.35										
ίM	Ap Crass Sample	Peak List	1.1.1.1				012111									
	u Uirt		_	_		R Peak Lin	_	_			S. Landale	entrasen				
Ξ.		Filename	Sample	10 Sample N	lame Sample Type	803		M/2 M	ns 📄 Mone Isetopic Mass 🔹	Retention Time Pe	-	Selected	D Source	- ID Source Detail	Match Recult Name	- 1v
				* 44	- M -						and a	64 -		6 ·	64 *	44
	1 🕒 M	10,444,23	1	MES, MAA, DI	Matrix Black	36		291.5228 2	0.2650 290.115	5 7.96 5	1		de - Chercloider			
		5.100ppb.0					8		0.2050 290.115 11.3905 276.224		1		Cherifipider	4440500	(97)-9-Octadecenami	de C10H
				MISJAWA,03		36		279.2317 2		4 8.19 3	1 2 3		Cherifipider Cherifipider	4440500 39176		de C10H
				MISJAWA,03		36 37	0	279.2317 2 576.3683 5	1.3905 278.224	4 8.19 3 0 8.21 8	1 2 3	0	Cherifipider	4440500	(97)-9-Octadecenami 5422	de C104 C104
				MISJAWA,03		56 37 38		279-2017 2 575-3683 5 297-2423 2	11.985 276.224 5.845 5.546	4 8.19 8 0 8.21 8 3 8.01 8	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
				MISJAWA,03		56 57 58 39	000	279,2317 2 575,360 5 297,2423 2 457,3674 4	11.985 271.224 5.645 575.649 6.4827 296.25	4 8.19.3 0 8.21.1 5 8.01.1 5 8.01.1	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
				MISJAWA,03		56 57 58 35 45		279-2317 2 575-3603 5 297-2423 2 657-3674 4 679-3909 0 255-2317 2	11.1905 271234 5.6425 5.75.80 6.4027 296235 4.5105 475.30 18.6926 6113.99 4.3742 254234	4 E 19 3 0 E 21 8 5 E 21 5 5 E 21 5 6 \$ 24 3	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
				MISJAWA,03		N 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2782317 2 5763883 5 2873883 2 8573674 4 6783989 0 2552317 2 2813873 2	11.3905 271.234 15.3475 575.340 6.4027 296.235 6.4100 475.340 18.4926 816.347 18.4926 816.347 81.4751 270.240	4 E 19 3 0 E 21 3 5 E 5 E 5 6 S 24 3 4 S 27 3 0 S 27 3	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
				MISJAWA,03		N 17 N 18 N 40 41 41		2742317 2 575.3683 5 287.3683 2 857.3674 4 678.3989 0 255.2317 2 287.3673 2 287.3673 2 372.3107 3	11.3905 278.224 5.5475 575.380 6.4027 286.235 6.4100 4%.380 16.926 4%.380 16.926 254.224 4.1742 254.224 0.4051 280.247 17.400 371.302	4 E19 3 0 E21 3 5 E41 5 6 S24 3 4 S27 3 0 S27 3 5 S37 2	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
				MISJAWA,03		56 57 58 58 58 59 40 41 41 41 40 40 40		279,2317 2 575,3483 5 297,3483 2 857,3674 4 078,3999 0 255,2317 2 201,3473 2 372,3107 3 496,3399 4	11.1905 271.224 5.4475 375.449 6.4527 296.235 6.4526 476.139 16.4526 671.399 4.1742 274.234 17.4520 771.300 6.5405 495.332	4 E19 1 0 E17 1 1 E17 1 4 E17 1 5 E17 1 4 State 2 6 State 3 5 State 3 6 State 3 5 State 3 6 State 3 7 2 6 State 3 7 2 8 State 3 8 State 3	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
				MISJAWA,03		56 57 58 58 58 50 41 41 41 41 40 44		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.3805 271.234 5.5455 575.380 6.4027 286.235 6.4100 496.380 4.5142 254.234 8.4751 270.240 9.4750 271.307 7.4800 271.307 5.465 445.310	4 E19 5 0 E21 5 1 E41 5 4 S24 5 4 S27 5 5 S37 1 5 S37 2 6 S42 5 7 S45 5	3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C18H
				MISJAWA,03		56 57 58 58 58 59 40 41 41 41 40 40 40		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.1905 271.224 5.4475 375.449 6.4527 296.235 6.4526 476.139 16.4526 671.399 4.1742 274.234 17.4520 771.300 6.5405 495.332	4 E19 5 0 E21 5 1 E41 5 4 S24 5 4 S27 5 5 S37 1 5 S37 2 6 S42 5 7 S45 5	3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	de C10H
	9 č u			MISJAWA,03		56 57 58 58 58 50 41 41 41 41 40 44		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.3805 27.12.24 5.4475 57.548 6.4277 256.275 4.4100 47.4580 4.4100 47.4580 14.4102 27.42.04 14.4102 27.42.04 14.4102 37.1300 15.707 521.348 14.4352 201.277	4 8.19 5 0 8.21 5 5 8.61 5 6 9.24 5 6 9.27 5 5 9.27 5 5 9.27 5 9 9.27	3 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	4 C104 C104 C104
)				MISJAWA,03		56 57 58 58 58 50 41 41 41 41 40 44		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.1805 27.12.24 3.64.75 55.16.00 46.102 26.62.15 46.103 46.16.189 46.104 46.16.199 4.1142 27.42.26 10.4051 27.102 45.545 445.130 55.545 445.130 17.107 57.1341 4.1552 201.271 4.252 201.271	4 8.19 5 0 8.21 5 5 8.61 5 6 9.24 5 6 9.27 5 5 9.27 5 5 9.27 5 9 9.27	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	6 C104 C104 C104
-	9 č u			MISJAWA,03		56 57 58 58 58 50 41 41 41 41 40 44		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.3805 27.12.24 5.4475 57.548 6.4277 256.275 4.4100 47.4580 4.4100 47.4580 14.4102 27.42.04 14.4102 27.42.04 14.4102 37.1300 15.707 521.348 14.4352 201.277	4 8.19 5 0 8.21 5 5 8.61 5 6 9.24 5 6 9.27 5 5 9.27 5 5 9.27 5 9 9.27	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	4 C104 C104 C104
100	2 S N			MISJAWA,03		56 57 58 58 58 50 41 41 41 41 40 44		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.1805 27.12.24 3.64.75 55.140 6.64.77 25.64.75 4.61.00 46.140 4.64.71 27.042.75 4.1102 27.42.75 4.1102 27.42.70 4.1102 27.42.70 4.1102 27.11.00 5.54.05 47.51.34 1.4.552 201.277 Course Longel Settle	4 8.19 5 0 8.21 5 5 8.61 5 6 9.24 5 6 9.27 5 5 9.27 5 5 9.27 5 9 9.27	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	6e C104 C104 C104
100	2 • M			MISJAWA,03		56 57 58 58 58 50 41 41 41 41 40 44		279,2317 2 576,3483 5 297,2423 2 452,3674 4 079,3795 0 205,2317 2 201,2473 2 372,3107 3 496,3399 4 522,3555 5	11.1805 27.12.24 3.64.75 55.16.00 46.102 26.62.15 46.103 46.16.189 46.104 46.16.199 4.1142 27.42.26 10.4051 27.102 45.545 445.130 55.545 445.130 17.107 57.1341 4.1552 201.271 4.252 201.271	4 8.19 5 0 8.21 5 5 8.61 5 6 9.24 5 6 9.27 5 5 9.27 5 5 9.27 5 9 9.27	1 2 3	0	Cherifipider Cherifipider	4440500 39176	(97)-9-Octadecenami 5422	64 C1040 C1040 C1040

	Mass		MES_bink_01 NS Area	MES MS /	100ppb_04 Алея														
94,1177		193,1103	U,	54,465	19,394,298														
14.1227		N/A		0	314,605,234														
51.0230		N/A		0	863,643,015														
77.1307		176.3313		26,928	23,337,903														
31.0576		NA			312,472,918														
18.0910		N/A		0	307,011,112														
42,1176		NYA	-		322,994,603														
59.0654		158.0579		13,664	3,126,449														
246.11.30		215.50%		41,006	MARK 642														
96.1279		197-2521		28.472	23,297,186														
207.1592		206.1510		09,710	27,721,632														
lint	_	_	_	_	_	_	_	_	_	_	_	- N	1	et faithing :					- 15
Select	ad an in	M7 M	ur Manal	etenic Mars	Retention Tin		ntential D	loss	Heinhe .	Detabate	and the de	Demental C -	-				 Match Result Name	1	
N										84 .		h	PU	Seetled .	D Source -	in annua		de .	1(2)
1		164.1176 18		193.11		2.68 1			4,290,676.25		N/A	N/A	1.1	8	de • Chemilaider		de • • • • • • • • • • • • • • • • • • •	CITHINNOS	- N
1		214.1227 21	1 1158	213.11	155	2.54 3			54,135,464.00		N/A	N/A			Cherropider		1212828	C14HISNO	N
	1	251.0230 25	10156	250.01	157	3.06 2		81,643,015	\$2,026,943.52	N/A	N/A	C3H808N4E	1.5	ä	ChemSpider		2006218	CIAHISNO	
1	1	177,1387 13	L1313	176.13	114	3.15 4		28,337,903	9,193,801.97	N/A	N/A	C11H17N2	1.1			1000		Call and	
		131.0526 13	10452	130.04	158	3.17 8		12,472,918	71,218,128.06	N/A	N/A	N/A							
1		238.0898 23		237.08		3.21 3			71,396,806.01		N/A	N/A							
1		242,1176 24		241,11		3.26 3			\$4,046,417.62		N/A	N/A							
I		199.0653 15		150.05		3.43 3			2,133,602.54		N/A	N/A							
		159.0653 15		150.05		3.50 3			10,713,041.10		N/A	N/A							
		256,1131 23		235.10		3.50 3			10,749,936,16		N/A	N/A							
		158.1285 15		997.13		3.50 0			11,967,173.56		N/A N/A	N/A							
6		107 1948 . 10		204.11		10.1		17 771 447	A NAVE BALLAD	N/A	N/A	NA	4						
				_		_	_		-	Cross Sal	igie Peak Ove	ley.							
1										2 50-						A			
1	_															- 11			
1																11			
1																			
1										6						A			

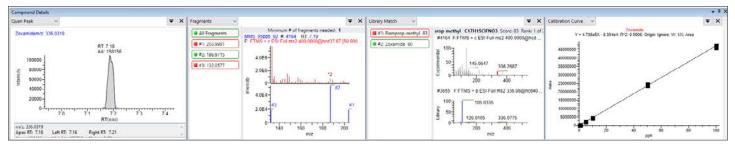
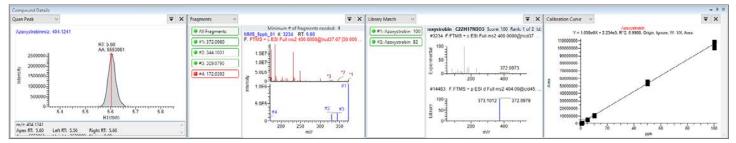

Figure 11. Proxan-anti-inflammatory drug was also identified in garlic.

Figure 12A–12D shows typical calibration curves (0.5–100 ng/mL) for Azoxystrobin, Zoxamide, Triflumizolem and Mefenacet in cumin and garlic (respectively). Over 95% of the pesticides studied had calibration curves with $r^2 > 0.990$ (Tables 2 and 3). Confirmation fragment ions are displayed in the middle of each panel at 0.5, 1 and 5 ng/mL for each pesticide, with indicator color (green) highlights that are easily visible to show passing fragment ions and curated mzCloud local spectra library criteria. A method of 100 pesticides was developed and optimized to ensure that at least one fragment ion was detected per compound while the LODs and LOQs were determined as outlined by the SANTE Guidance (SANTE/12682/2019).²


A) Azoxystrobin

B) Zoxamide

C) Triflumizolem

D) Mefenacet

Figure 12. The quantitation and confirmation ions along with calibration range from 0.5 to 100 ppb for (A and B in Cumin) Azoxystrobin at 5 ppb and Zoxamide at 0.5 ppb and (C and D in Garlic) Triflumizolem at 0.5 ppb and Mefenacet at 1 ppb shown in TraceFinder software. All results have excellent R² and MS² fragment ion matching. The technique allows for confident quantitation and screening with confirmation well below or at the MRL concentration.

thermo scientific

Conclusion

A select targeted panel of pesticides for quantitative analysis at levels below or at EU MRLs have been shown to provide excellent sensitivity and robustness in cumin and garlic. TraceFinder software provides the flexibility to quickly identify unknown contamination within samples using the unknown feature of the software. The capability to search online databases helps to identify unknowns given the excellent mass accuracy and high-resolving power of the Orbitrap Exploris 120 mass spectrometer. These features significantly lower the number of IDs possible and the new AcquireX workflow, utilizing automatic background subtraction, makes identification easier. Ongoing work is required to determine the true unknown chemicals by either chemical synthesis, NMR or other techniques to prove the authenticity of the unknown identifications.

References

- 1. SANTE Guidelines https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_ SANTE_2019_12682.pdf (accessed Mar. 2021).
- 2. SANTE Guidelines https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_ mrl_guidelines_wrkdoc_2017-11813.pdf (accessed Mar. 2021).

Find out more at thermofisher.com/pesticides

For Research Use Only. Not for use in diagnostic procedures. © 2021 Thermo Fisher Scientific Inc. All rights reserved. ChemSpider is a trademark of the Royal Society of Chemistry and Ultra Scientific is a trademark of Agilent Technologies, Inc. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. AN65983-EN 0421M