

# Application News

High Performance Liquid Chromatograph Mass Spectrometer

## Breakthrough Sensitivity and Robustness for PFAS Analysis in Chicken Tissue for EPA Method 1633A

 Om Shrestha, Eishi Imoto, Toshiya Matsubara  
 Shimadzu Scientific Instruments, R&D center

### User Benefits

- ◆ LCMS-8065XE achieved up to 80 times lower limit of quantifications than LLOQ concentration in EPA Method 1633A.
- ◆ The measurement time was 10 min while meeting the chromatographic requirements by EPA Method 1633A.
- ◆ This method showed the excellent robustness across 7 days of over 900 continuous injections of the matrix sample.

### ■ Introduction

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic chemicals widely used in industry and consumer products. Owing to their persistence and potential health risks, PFAS have become a major environmental concern. The U.S. Environmental Protection Agency (EPA) has developed standardized analytical methods, including EPA Method 1633A, to monitor PFAS contamination in a wide range of environmental and biological matrices. This study evaluates the performance of LCMS-8065XE for PFAS analysis in accordance with EPA Method 1633A. By assessing calibration stability over the course of one week, we demonstrate the method's suitability for routine PFAS monitoring. All aspects of the workflow including sample extraction, preparation, and analysis, were performed in compliance with EPA Method 1633A guidelines<sup>(1)</sup>. Our results highlight the system's robustness and minimal downtime, underscoring its value for laboratories responsible for delivering rapid and reliable PFAS determinations.



Fig. 1 LCMS-8065XE. The combination of low-diffusion nebulizer nozzle and IonFocus™ technology achieve both high sensitivity and robustness.

### ■ Method Overview

This application describes the analysis of 40 native PFAS target compounds using 24 extracted internal standards (EIS), and 7 non-extracted internal standards (NIS). Stock standards were purchased from Wellington Laboratories (Ontario, Canada) as a series of native and mass-labelled PFAS mixtures in methanol (PFAC-MXF, PFAC-MXG, PFAC-MXH, PFAC-MXI, PFAC-MXJ, MPFAC-HIF-ES, and MPFAC-HIF-IS). Three spiking standards were prepared, containing the native targets, EIS and NIS compounds, by diluting the stock solutions in methanol. Calibration curves were generated by preparing methanol containing 4% water, 1% ammonium hydroxide, and 0.625% acetic acid. The stock standards were then diluted to yield concentration ranges of 2.5 to 62,400 ng/L for native PFAS targets, 1.0 to 20.0 µg/L for EIS, and 1.0 to 4.0 µg/L for NIS. All standards were prepared for analysis in 200 µL silanized glass inserts in 1.5 mL amber silanized glass vials, sealed with PE/silicone blue screw caps.

Table 1 EPA Method 1633A compound list

| #  | Type   | Name         | #  | Type | Name         |
|----|--------|--------------|----|------|--------------|
| 1  | Target | PFBA         | 1  | EIS  | 13C4-PFBA    |
| 2  | Target | PFMPA        | 2  | EIS  | 13C5-PFPeA   |
| 3  | Target | 3:3 FTCA     | 3  | EIS  | 13C2-4:2 FTS |
| 4  | Target | PFPeA        | 4  | EIS  | 13C5-PFHxA   |
| 5  | Target | PFMBA        | 5  | EIS  | 13C3-PFBS    |
| 6  | Target | 4:2 FTS      | 6  | EIS  | 13C3-HFPO-DA |
| 7  | Target | NFDHA        | 7  | EIS  | 13C4-PFHxA   |
| 8  | Target | PFHxA        | 8  | EIS  | 13C2-6:2FTS  |
| 9  | Target | PFBS         | 9  | EIS  | 13C8-PFOA    |
| 10 | Target | HFPO-DA      | 10 | EIS  | 13C3-PFHxS   |
| 11 | Target | 5:3 FTCA     | 11 | EIS  | 13C9-PFNA    |
| 12 | Target | PFEESA       | 12 | EIS  | 13C2-8:2FTS  |
| 13 | Target | PFHxA        | 13 | EIS  | D3-NMeFOSAA  |
| 14 | Target | PFPeS        | 14 | EIS  | 13C6-PFDA    |
| 15 | Target | ADONA        | 15 | EIS  | D5-NetFOSAA  |
| 16 | Target | 6:2 FTS      | 16 | EIS  | 13C8-PFOS    |
| 17 | Target | PFOA         | 17 | EIS  | 13C7-PFUnA   |
| 18 | Target | PFHxS        | 18 | EIS  | 13C2-PFDoA   |
| 19 | Target | 7:3 FTCA     | 19 | EIS  | 13C8-PFOSA   |
| 20 | Target | PFNA         | 20 | EIS  | 13C2-PFTeDA  |
| 21 | Target | PFHxS        | 21 | EIS  | D7-NMeFOSE   |
| 22 | Target | 8:2 FTS      | 22 | EIS  | D3-NMeFOSA   |
| 23 | Target | NMeFOSAA     | 23 | EIS  | D9-NetFOSE   |
| 24 | Target | PFDA         | 24 | EIS  | D5-EtFOSA    |
| 25 | Target | NEtFOSAA     | 1  | NIS  | 13C3-PFBA    |
| 26 | Target | PFOS         | 2  | NIS  | 13C2-PFHxA   |
| 27 | Target | PFUnA        | 3  | NIS  | 13C4-PFOA    |
| 28 | Target | 9CI-PF3ONS   | 4  | NIS  | 18O2-PFHxA   |
| 29 | Target | PFNS         | 5  | NIS  | 13C5-PFNA    |
| 30 | Target | PFDOA        | 6  | NIS  | 13C2-PFDA    |
| 31 | Target | PFOSA        | 7  | NIS  | 13C4-PFOS    |
| 32 | Target | PFDS         |    |      |              |
| 33 | Target | PFTrDA       |    |      |              |
| 34 | Target | 11CI-PF3OUDS |    |      |              |
| 35 | Target | PFTeDA       |    |      |              |
| 36 | Target | PF DOS       |    |      |              |
| 37 | Target | NMeFOSE      |    |      |              |
| 38 | Target | NMeFOSA      |    |      |              |
| 39 | Target | NEtFOSE      |    |      |              |
| 40 | Target | NEtFOSA      |    |      |              |

## ■ Sample Preparation and Extraction

Automated extraction was performed using the EDGE PFAS system (see Fig. 2). Sample preparation procedures are described in Fig3. Approximately 2 grams of chicken tissue was weighed into a Q-Cup. Each sample was spiked with 25  $\mu$ L of MPFAC-HIF-ES and 40  $\mu$ L of native compounds. Method Blanks (MB) were also prepared, spiked only with EIS. Samples were extracted by solid phase extraction (SPE) using Supelclean™ ENVI-WAX SPE Tube (Millipore Sigma). Silanized glass wool was added to each cartridge prior to extraction, and the cartridges were pre-conditioned with 1% methanolic ammonium hydroxide.



Figure 2. The appearance of EDGE PFAS (CEM) which automates the extraction of PFAS from field samples.

### Automated extraction procedures by EDGE PFAS

|         |                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Cycle 1 | <ul style="list-style-type: none"> <li>• Weigh 2 grams of tissue sample into Q-Cup</li> <li>• 0.05 M KOH in methanol, 10mL, 65 °C, 3 min</li> </ul> |
| Cycle 2 | <ul style="list-style-type: none"> <li>• Acetonitrile, 10mL, 65 °C, 3 min</li> </ul>                                                                |
| Wash 1  | <ul style="list-style-type: none"> <li>• IPA, 10 mL</li> </ul>                                                                                      |
| Wash 2  | <ul style="list-style-type: none"> <li>• 0.05 M KOH in methanol, 10 mL, 65 °C, 0.5 min</li> </ul>                                                   |
| Wash 3  | <ul style="list-style-type: none"> <li>• 0.05 M KOH in methanol, 10 mL</li> </ul>                                                                   |

### Clean-up procedures

|                |                                                                                                                                                                                                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Condition      | <ul style="list-style-type: none"> <li>• Insertion of silanized glass wool to the WAX SPE cartridge</li> <li>• 15 mL 1% methanolic ammonium hydroxide</li> <li>• 5mL 0.3 M formic acid</li> </ul> |
| Sample Loading | <ul style="list-style-type: none"> <li>• 5 mL/min</li> </ul>                                                                                                                                      |
| Washing        | <ul style="list-style-type: none"> <li>• 5 mL Water (twice)</li> <li>• 5mL 1:1 0.1M formic acid/methanol</li> </ul>                                                                               |
| Elution        | <ul style="list-style-type: none"> <li>• 5mL 1% methanolic ammonium hydroxide</li> </ul>                                                                                                          |
| Cleanup        | <ul style="list-style-type: none"> <li>• 25 <math>\mu</math>L Acetic Acid</li> <li>• Handshake</li> <li>• Transfer to LC vial</li> </ul>                                                          |

Figure 3. Extraction and clean-up scheme

Samples were loaded onto WAX cartridges at a flow rate of 5 mL/min. The cartridges were rinsed with LC/MS grade water followed by 0.1 mol/L formic acid/methanol and then dried under vacuum for 15 seconds. Elution was performed by rinsing the sample bottles with 1% methanolic ammonium hydroxide and passing the eluate through the WAX cartridge. Acetic acid was added to each extract, which was then hand-shaken for up to five minutes and centrifuged for ten minutes. An aliquot of the supernatant was transferred to a 1 mL silanized amber glass vial and spiked with 0.5  $\mu$ L MPFAC-HIF-IS this vial was vortexed prior to LC/MS analysis.

## ■ Instrument and Operational Conditions

LCMS analyses were performed using a Shimadzu triple quadrupole mass spectrometer, LCMS-8065XE, coupled with a Shimadzu Nexera™ 40 series UHPLC. To minimize PFAS background contamination, a delay column was installed between the mixer and high-pressure valve. The LC and MS parameters are summarized in Table 2 and 3. Analyses included a calibration curve, instrument blank, a calibration verification (CV), method blanks, and spiked chicken tissue samples.

A robustness test was conducted by monitoring calibration verification, method blanks, and spiked chicken tissue samples. Prior to each LC-MS/MS run, every vial was vortexed to resuspend PFAS compounds that may have adsorbed to the vial walls. This procedure helped improve the relative standard error (RSE), as PFAS compounds are known to adsorb to glass surfaces.

Table 2. LC conditions

|                   |                                                                                |
|-------------------|--------------------------------------------------------------------------------|
| System            | Nexera X3                                                                      |
| Delay Column      | Shim-pack Scepter™ C18-120, 2.1 $\times$ 100 mm, 3 $\mu$ m (P/N: 227-31035-05) |
| Analytical Column | Shim-pack Scepter C18-120, 2.1 $\times$ 50 mm, 1.9 $\mu$ m (P/N: 227-31033-03) |
| Flow rate         | 0.3 mL/min                                                                     |
| Mobile phase A    | 2mM Ammonium Acetate in Water                                                  |
| Mobile phase B    | Acetonitrile                                                                   |
| Injection volume  | 5 $\mu$ L standard injection                                                   |
| Oven temperature  | 35 °C                                                                          |
| Measurement time  | 10 min                                                                         |

Table 3. MS conditions

|                        |             |
|------------------------|-------------|
| System                 | LCMS-8065XE |
| Nebulizing gas         | 1.1 L/min   |
| Heating gas            | 15.0 L/min  |
| Drying gas             | 5.0 L/min   |
| Interface Temperature  | 225°C       |
| DL Temperature         | 200°C       |
| Heat Block Temperature | 250°C       |
| Interface voltage      | -0.5 kV     |
| Focus voltage          | 0 kV        |

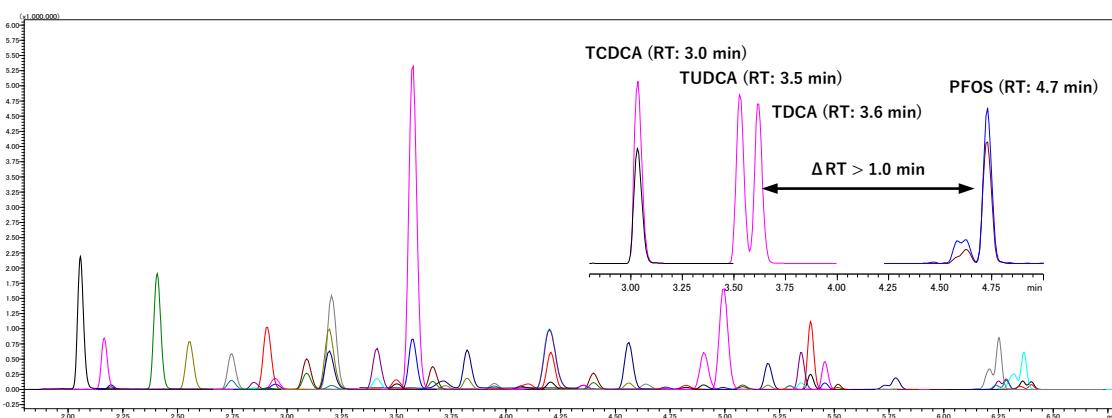



Figure 4. MS chromatogram of 40 PFAS and 3 cholic acids.  
Measuring time for 40 PFASs was 10 min.

## ■ Chromatographic separation

Cholic acids, such as taurodeoxycholic acid (TDCA), taurochenodeoxycholic acid (TCDCA), and taurooursodeoxycholic acid (TUDCA), can interfere with PFOS during the ionization process because their precursor and product ions are similar. These bile acids are present in tissue and wastewater samples. Therefore, one of the requirements of the LC method for EPA Method 1633A is to achieve a separation of at least 1 min between PFOS and these cholic acids. In this study, acetonitrile was used as mobile phase B to meet this requirement. Figure 4 shows the chromatographic separation of forty PFAS listed in EPA Method 1633A. With acetonitrile, the cholic acids eluted much earlier than both branched and linear PFOS. The retention time difference was 1.5 min, which exceeded the required one-minute separation.

## ■ Calibration Curve Results

The relative standard error (RSE) of all native target PFAS ranged from 3% to 17%, remaining below the maximum limit of 20% specified in the EPA Method 1633A. Table 4 summarizes the concentration ranges, RF RSE values and calibration correlations for 40 PFAS compounds. All calibration curves, blanks and MS chromatograms at the LLOQ are shown in Figure 5. Each calibration curve included at least seven calibration standards within the linear quantitative range. The generated calibration curves exhibited linear regression with  $R^2 > 0.995$ . All accuracy ranges at each calibration points were within 70-130%.

Table 4. Calibration ranges, RF RSE values and correlation  $R^2$  and accuracy ranges for 40 PFAS

| #  | Name         | Calibration Range [ng/L] | EPA LLOQ conc. [ng/L] | RF RSE (curve) | Linearity ( $R^2$ ) | % Accuracy range |
|----|--------------|--------------------------|-----------------------|----------------|---------------------|------------------|
| 1  | PFBA         | 10-10000                 | 800                   | 4              | 0.998               | 95-105           |
| 2  | PFMPA        | 5-5000                   | 400                   | 7              | 0.995               | 92-113           |
| 3  | 3:3 FTCA     | 62.4-62400               | 998                   | 7              | 0.995               | 90-113           |
| 4  | PFPeA        | 5-5000                   | 400                   | 4              | 0.998               | 95-106           |
| 5  | PFMBA        | 5-5000                   | 400                   | 6              | 0.996               | 92-110           |
| 6  | 4:2 FTS      | 10-10000                 | 800                   | 7              | 0.995               | 88-106           |
| 7  | NFDHA        | 5-5000                   | 400                   | 7              | 0.995               | 89-111           |
| 8  | PFHxA        | 2.5-2500                 | 200                   | 6              | 0.996               | 94-114           |
| 9  | PFBS         | 2.5-2500                 | 200                   | 6              | 0.997               | 92-110           |
| 10 | HFPO-DA      | 10-10000                 | 800                   | 4              | 0.998               | 93-106           |
| 11 | 5:3 FTCA     | 2.5-2500                 | 4992                  | 5              | 0.997               | 92-106           |
| 12 | PFEESA       | 5-5000                   | 400                   | 3              | 0.999               | 95-104           |
| 13 | PFHpA        | 2.5-2500                 | 200                   | 5              | 0.997               | 92-109           |
| 14 | PFPeS        | 2.5-2500                 | 200                   | 6              | 0.996               | 92-108           |
| 15 | ADONA        | 10-10000                 | 800                   | 5              | 0.998               | 91-105           |
| 16 | 6:2 FTS      | 2.5-2500                 | 800                   | 7              | 0.995               | 94-111           |
| 17 | PFOA         | 2.5-2500                 | 200                   | 6              | 0.996               | 95-113           |
| 18 | PFHxS        | 2.5-2500                 | 200                   | 6              | 0.996               | 87-107           |
| 19 | 7:3 FTCA     | 25-25000                 | 4992                  | 5              | 0.997               | 94-106           |
| 20 | PFNA         | 2.5-2500                 | 200                   | 6              | 0.996               | 94-109           |
| 21 | PFHpS        | 2.5-2500                 | 200                   | 7              | 0.995               | 92-111           |
| 22 | 8:2 FTS      | 2.5-2500                 | 800                   | 17             | 0.995               | 85-116           |
| 23 | NMeFOSAA     | 6.3-2500                 | 200                   | 7              | 0.995               | 89-108           |
| 24 | PFDA         | 2.5-2500                 | 200                   | 6              | 0.996               | 92-109           |
| 25 | NEtFOSAA     | 6.3-2500                 | 200                   | 7              | 0.995               | 90-109           |
| 26 | PFOS         | 6.3-2500                 | 200                   | 6              | 0.997               | 94-110           |
| 27 | PFUnA        | 2.5-2500                 | 200                   | 4              | 0.998               | 94-105           |
| 28 | 9CI-PF3ONS   | 10-10000                 | 800                   | 6              | 0.997               | 91-109           |
| 29 | PFNS         | 2.5-2500                 | 200                   | 7              | 0.995               | 90-110           |
| 30 | PFDOA        | 2.5-2500                 | 200                   | 5              | 0.997               | 94-109           |
| 31 | PFOSA        | 2.5-2500                 | 200                   | 5              | 0.997               | 95-111           |
| 32 | PFDS         | 2.5-2500                 | 200                   | 7              | 0.995               | 92-112           |
| 33 | PFTrDA       | 2.5-2500                 | 200                   | 5              | 0.997               | 90-106           |
| 34 | 11CI-PF3OUdS | 10-10000                 | 800                   | 4              | 0.998               | 94-106           |
| 35 | PFTeDA       | 2.5-2500                 | 200                   | 6              | 0.996               | 93-111           |
| 36 | PF DOS       | 6.3-2500                 | 200                   | 9              | 0.997               | 84-116           |
| 37 | NMeFOSE      | 25-25000                 | 2000                  | 6              | 0.996               | 93-113           |
| 38 | NMeFOSA      | 2.5-2500                 | 200                   | 5              | 0.997               | 92-111           |
| 39 | NEtFOSE      | 25-25000                 | 2000                  | 3              | 0.999               | 95-110           |
| 40 | NEtFOSA      | 6.3-2500                 | 200                   | 5              | 0.997               | 96-106           |

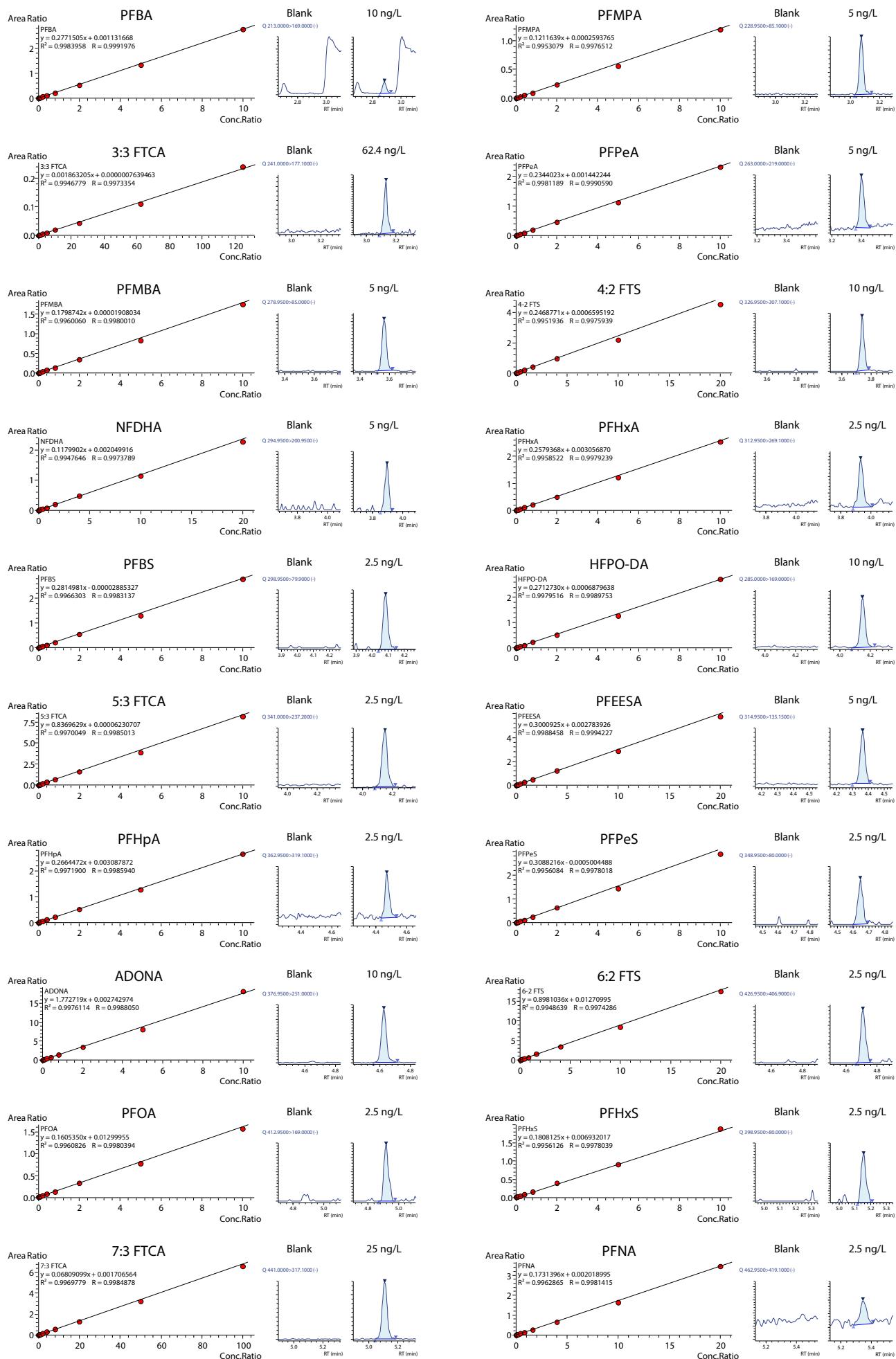



Figure 5. Calibration curves and MS chromatograms of blank and LLOQ for 40 PFAS compounds

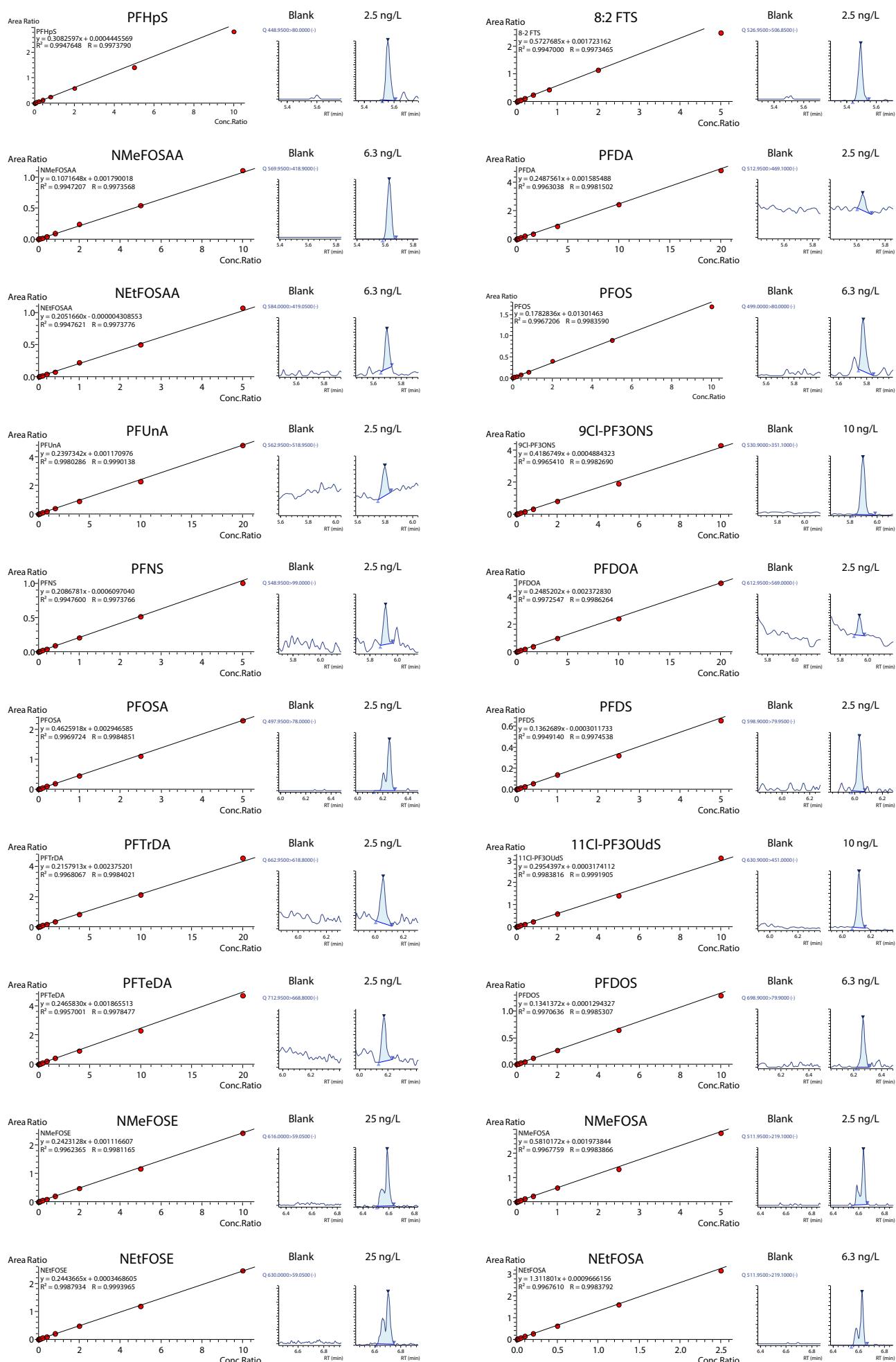



Figure 5 (continued). Calibration curves and MS chromatograms of blank and LLOQ for 40 PFAS compounds

## ■ Robustness test

The level 5 calibration standard was used as the continuing calibration verification (CCV). This concentration was four times lower than the required LLOQ specified in EPA Method 1633A. CCVs were analyzed to monitor quantitative performance stability. Figure 6 shows the accuracy of representative PFBS, HFPO-DA, PFOA, PFHxS, PFNA, and PFOS in CCV samples. A total of 930 injections were performed, with CCVs injected after the analysis of several chicken tissue samples during the test. All CCVs (n=73), shown in Figure 6, demonstrated accuracies within 70-130%. These results highlight the excellent robustness of the LCMS-8065XE for analysis in complex sample matrices.

## ■ Conclusion

The LCMS-8065XE was able to detect concentrations up to 80 times lower than the LLOQ required in EPA Method 1633A, using a neat standard solution.

Excellent linearity was achieved with the developed method, as indicated by RSE values below 20% and high  $R^2$  values. This method demonstrates high throughput and robust instrument performance, maintaining accurate quantification in complex chicken tissue matrices without the need for maintenance or cleaning.

## ■ Reference

- (1) Method 1633A, Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS

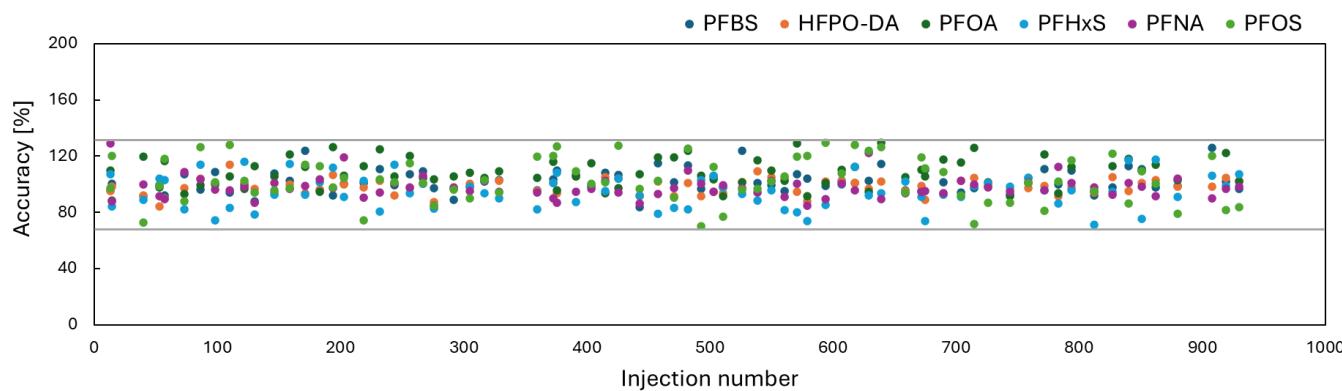



Figure 6. Accuracy plots for PFBS, HFPO-DA, PFOA, PFHxS, PFNA and PFOS in continuing calibration verification (CCV) samples.  
CCVs were injected after several chicken tissue samples during robustness test.  
CCV accuracies were within  $\pm 30\%$  (gray line) from assigned concentration level over 900 injections.

IonFocus, Nexera, and Shim-pack Scepter are trademarks of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.



Shimadzu Corporation

[www.shimadzu.com/an/](http://www.shimadzu.com/an/)

### For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See <https://www.shimadzu.com/about/trademarks/index.html> for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

01-01046-EN

First Edition: Aug. 2025

➤ Please fill out the survey

## Related Products

Some products may be updated to newer models.



### ➤ LCMS-8065XE

Triple Quadrupole LC-MS/MS

## Related Solutions

➤ Environment

➤ PFAS

➤ Price Inquiry

➤ Product Inquiry

➤ Technical Service /  
Support Inquiry

➤ Other Inquiry