Extraction of Tobacco-Specific Nitrosamines (TSNAs) from Urine Using ISOLUTE® SLE+ Prior to UPLC/MS/MS Analysis

Figure 1. Structure of N-nitrosonornicotine (NNN).

Introduction

TSNAs, or tobacco-specific nitrosamines, are carcinogens found in tobacco products, including e-cigarettes and smokeless tobacco. NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol), and NNN (n-nitrosonornicotine) are the most commonly analyzed TSNAs. NNK has been seen to cause lung cancer in laboratory animals, NNAL is a metabolite of NNK, and NNN has been seen to cause esophageal cancer in laboratory animals. This proof of concept study focusses on NNN (n-nitrosonornicotine).

TSNAs can be difficult to accurately detect, as, like nicotine, there can be false positives for secondhand and third-hand contamination. Secondhand contamination, or secondhand smoke, causes non-smokers to test positive for TSNAs if the detection limits for the method are low. Third-hand contamination can be from test tubes, extraction media, pipette tips, or any number of items used throughout the sample extraction and analysis processes.

ISOLUTE® SLE+ Supported Liquid Extraction plates and columns offer an efficient alternative to traditional liquid-liquid extraction (LLE) for bioanalytical sample preparation, providing high analyte recoveries, no emulsion formation, and significantly reduced sample preparation.

Analytes

This proof of concept study focusses on NNN (n-nitrosonornicotine), but the supported liquid extraction methodology described is a also suitable for NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol)

Sample Preparation Procedure

Most donor urine samples will test positive for various TSNAs, especially at lower limits of quantitation/detection. Because of this, water or a synthetic urine (i.e. Urisub) should be used for all controls/calibrators.

Format

ISOLUTE $^{\circ}$ SLE+ 1 mL sample volume columns (tabless), p/n 820-00140-CG.

Sample Loading

Load 1 mL of the pre-treated (IS spiked) urine sample onto the column and apply a pulse of vacuum or positive pressure (3-5 seconds) to initiate flow. Allow the sample to absorb for 5 minutes.

Analyte Extraction

Apply 1.5 mL of dichloromethane and allow to flow under gravity for 5 minutes. Apply a further aliquot of dichloromethane (1.5 mL) and allow to flow for another 5 minutes under gravity. Apply vacuum or positive pressure to pull through any remaining extraction solvent (5–10 seconds).

Post Elution and Reconstitution

Dry the extract in a stream of air or nitrogen using a $TurboVap^*$ at 40 °C, 1.5 L/min, for 20 minutes.

Reconstitute in Mobile Phase A/ Mobile Phase B (90:10, v/v, 100 μ L).

HPLC Parameters

Instrument

Shimadzu Nexera X2

Column

Restek Raptor Biphenyl (50 x 3 mm, 2.1 µm)

Mobile Phase A (MOB A)

o.1% formic acid in water

Mobile Phase B (MOB B)

Acetonitrile

Flow Rate

o.45 mL/min

Column Temperature

50°C

Table 1. LC Gradient for Restek Raptor Biphenyl 50 x 3 mm, 2.1 μm column.

Time	% МОВ В
0.01	5
0.5	15
4.75	60
5.0	95
5.8	95
6.0	5

MS/MS Parameters

Instrument

SCIEX 5500 Triple Quadrupole Mass Spectrometer

Curtain Gas

30 °C

CAD

8

Ionspray

1500 V

Temperature

400 °C

GS1

50

GS2

50

Entrance Potential

10

 Table 2. Transitions for SCIEX 5500 Triple Quadrupole Mass Spectrometer.

Compound	Q1	Q3	DP	CE	СХР
NNN-D ₄ 1	182.045	124.1	181	25	8
NNN- D ₄ 2	182.045	122.1	181	41	8
NNN- D ₄ 3	182.045	109.1	181	25	8
NNN 1	178.009	120.1	156	25	8
NNN 2	178.009	119.1	156	41	8
NNN 3	178.009	105.1	156	25	8

Results

When using this method, chromatography for the TSNAs and their internal standards is acceptable. If determination of higher TSNA concentrations are desired, detuning the compounds may be necessary. Column overload could be seen at concentrations of 10 and 100 ng/mL when using this method. Limits of quantitation/detection (LOQ/LODs) of 10 pg/mL can be achieved when using ISOLUTE® SLE+ for sample clean up.

Discussion

Due to the potential for contamination of control urine samples, spiked water or synthetic urine should be run to determine LOQ/LODs along with water or synthetic urine that has not been spiked. This will help determine at what concentration the negative samples may contain TSNAs. Running several donor urine samples from both smokers and non-smokers could help to determine reasonable cutoff concentrations. This method can be difficult to develop due to secondhand and third-hand TSNA contamination.

Conclusion

Using an ISOLUTE SLE+ sample preparation method allows for a fast extraction method with sufficient sample clean up resulting in cleaner extracts.

Ordering Information

Part Number	Description	Quantity
820-0140-CG	ISOLUTE SLE+ 1 mL Supported Liquid Extraction Column Tabless	30
PPM-48	Biotage PRESSURE+ 48 Positive Pressure Manifold for Columns.	1
SD-9600-DHS-EU	Biotage® SPE Dry 96 Sample Evaporator 220/240V	1
SD-9600-DHS-NA	Biotage® SPE Dry 96 Sample Evaporator 100/120V	1
C103198	TurboVap® LV Without Racks 100/120V	1
C103199	TurboVap® LV Without Racks 220/240V	1

EUROPE	NORTH & LATIN AMERICA	JAPAN	CHINA	KOREA
Main Office: +46 18 565900	Main Office: +1 704 654 4900	Tel: +81 3 5627 3123	Tel: +86 21 2898 6655	Tel: + 82 31 706 8500
Toll Free: +800 18 565710	Toll Free: +1 800 446 4752	Fax: +81 3 5627 3121	Fax: +86 21 2898 6153	Fax:+ 82 31 706 8510
Fax: +46 18 591922	Fax: +1 704 654 4917	jp_order@biotage.com	cn_order@biotage.com	korea_info@biotage.com
Order Tel: +46 18 565710	Order Tel: +1 704 654 4900	jp-1-pointsupport@biotage.com	cn-1-pointsupport@biotage.com	kr-1-pointsupport@biotage.com
Order Fax: +46 18 565705	Order Fax: +1 434 296 8217			

Distributors in other regions are listed on www.biotage.com

order@biotage.com

Support Tel: +46 18 56 59 11

Support Fax: + 46 18 56 57 11 Outside US: +1 704 654 4900 eu-1-pointsupport@biotage.com us-1-pointsupport@biotage.com

ordermailbox@biotage.com

Support Tel: +1 800 446 4752