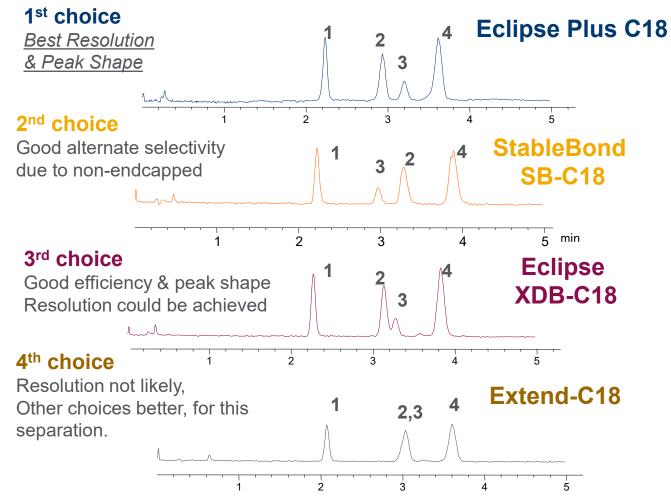
Treat Yourself to Good Chromatography

Tips and tricks

Rita Steed LC Application Engineer October 17, 2019

Column Related


Column

- Column Choices
- New Column
 - Save Performance Report
 - Test mix (PN 01080-68704); 65/35 ACN/H2O or MeOH
- Installation
- Appropriate conditions
- Column Lifetime
 - Conditions for bad lifetime
 - Keep record/Column History
 - Store properly
- Method parameters, flow, inj, etc.

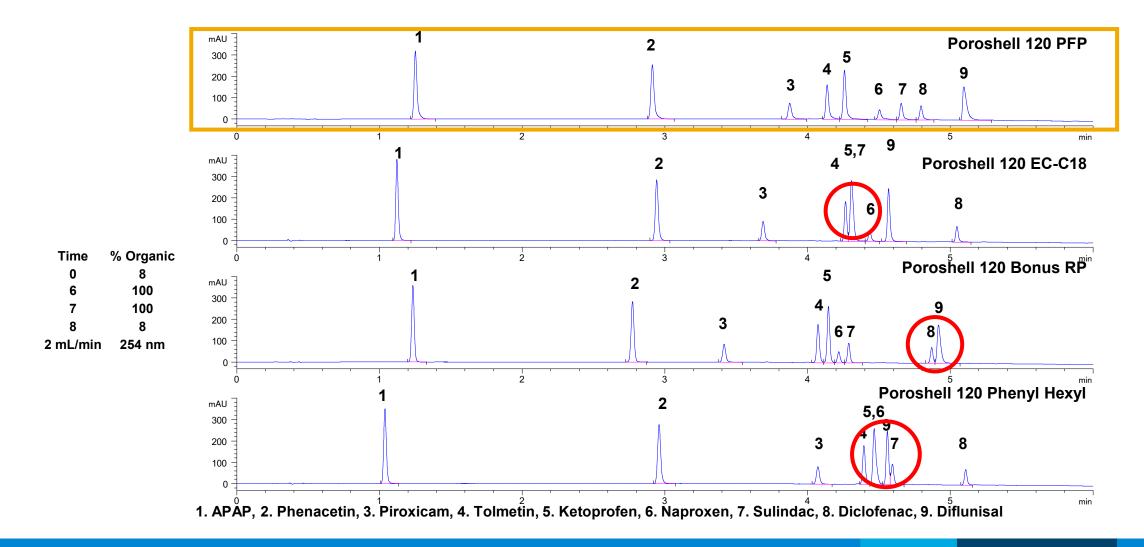
Different ZORBAX RRHT C18 Bonded Phases

Columns: RRHT, 4.6 x 50 mm 1.8 um

Mobile phase: (69:31) ACN: water Flow 1.5 mL/min. Temp: 30 °C Detector: Single Quad ESI, pos scan mode

Sample:

- 1. anandamide (AEA)
- 2. Palmitoylethanolamide (PEA)
- 3. 2-arachinoylglycerol (2-AG)
- 4. Oleoylethanolamide (OEA)


Tip: Not all C18s are the same! Trick: Test & find the best one for your application: Check out MD kits.

NSAID Separation with MeOH Gradient

Best resolution of all analytes with Poroshell 120 PFP

Column Specifications

InfinityLab Poroshell 120 column specifications

Best for high-pH mobile phases HPH-C8 100Å 60°C 3.0-11.0 Double Proprietary Best for basic compounds at low pH CS-C18 120Å 60°C 2.0-8.0 Double Proprietary Best for polar compounds (HILIC) HILIC 120Å 60°C 0.0-8.0 N/A N/A Best for polar compounds (HILIC) HILIC-Z 120Å 60°C 3.0-11.0 Proprietary Proprietary Best for alternative selectivity HILIC-DHS 120Å 60°C 2.0-8.0 Double Proprietary Best for alternative selectivity Bonus-RP 120Å 60°C 2.0-8.0 Double 5.1% PFP 120Å 60°C 2.0-8.0 Double 5.1% Best for alternative selectivity Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% Best for alternative selectivity Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% Best for alternative selectivity Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double	ad Surface Area	Carbon Load	Endcapped	pH Range	Temp. Limits	Pore Size		InfinityLab Poroshell Family	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	130 m2/g	10%	Double	2.0-8.0	60°C	1:20Å	EC-C18		
Best for low-pH mobile phases S8-C8 120Å 80°C 1.0-8.0 No 5.5% Best for high-pH mobile phases HPH-C18 100Å 60°C 3.0-11.0 Double Proprietar Best for basic compounds at low pH CS-C18 120Å 60°C 3.0-11.0 Double Proprietar Best for polar compounds (HILIC) HILIC 120Å 60°C 2.0-8.0 Double Proprietar HILIC-Z 120Å 60°C 0.0-8.0 N/A N/A Best for polar compounds (HILIC) HILIC-Z 120Å 60°C 3.0-11.0 Proprietary HILIC-Z 120Å 60°C 0.0-8.0 N/A N/A Best for alternative selectivity HILIC-Z 120Å 60°C 2.0-8.0 Double Proprietar Best for alternative selectivity Bonus-RP 120Å 60°C 2.0-8.0 Double 5.5% PFP 120Å 60°C 2.0-8.0 Double 5.1% SB-Aq 120Å 60°C 2.0-8.0 Doub	130 m2/g	5%	Double	2.0-8.0	60°C	120Å	EC-C8	Best all around	
SB-C8 120Å 80°C 1.0-8.0 No 5.5% Beat for high-pH mobile phases HPH-C18 100Å 60°C 3.0-11.0 Double Proprietary Beat for basic compounds at low pH CS-C18 120Å 60°C 2.0-8.0 Double Proprietary Beat for polar compounds (HILIC) HILIC 120Å 60°C 0.0-8.0 N/A N/A Beat for alternative selectivity HILIC-Z 120Å 60°C 2.0-8.0 Double Proprietary Beat for alternative selectivity HILIC-Z 120Å 60°C 2.0-8.0 N/A N/A Beat for alternative selectivity HILIC-Z 120Å 60°C 2.0-8.0 Double Proprietary Beat for alternative selectivity HILIC-DHS 120Å 60°C 2.0-8.0 Double 9.5% Beat for alternative selectivity PFP 120Å 60°C 2.0-8.0 Double 9.5% Beat for alternative selectivity Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9.5%	130 m2/g	9%	No	1.0-8.0	90°C	120Å	S8-C18	Sector law all mable above	
Best for high-pH mobile phases HPH-C8 100Å 60°C 3.0-11.0 Double Proprietary Best for basic compounds at low pH CS-C18 120Å 60°C 2.0-8.0 Double Proprietary Best for polar compounds (HILIC) HILIC 120Å 60°C 3.0-11.0 Proprietary Proprietary Best for polar compounds (HILIC) HILIC-Z 120Å 60°C 3.0-11.0 Proprietary Proprietary Best for alternative selectivity HILIC-OHS 120Å 45°C 1.0-7.0 Double Proprietary Best for alternative selectivity Bonus-RP 120Å 60°C 2.0-8.0 Double 5.1% PFP 120Å 60°C 2.0-8.0 Double 5.1% SB-Aq 120Å 60°C 2.0-8.0 Double 9% SB-Aq 120Å 60°C 2.0-8.0 Double 3.5% Chiral-V 120Å 60°C 2.0-8.0 Double 3.5%	130 m2/g	5.5%	No	1.0-8.0	80°C	120Å	S8-C8	Best for low-pH mobile phases	
HPH-C8 100Å 60°C 3.0-11.0 Double Proprietary Best for basic compounds at low pH CS-C18 120Å 60°C 2.0-8.0 Double Proprietary Best for polar compounds (HILIC) HILIC 120Å 60°C 0.0-8.0 N/A N/A Best for polar compounds (HILIC) HILIC 120Å 60°C 3.0-11.0 Proprietary Proprietary HILIC-Z 120Å 60°C 2.0-8.0 Double Proprietary HILIC-DHS 120Å 45°C 1.0-7.0 Double Proprietary Bonus-RP 120Å 60°C 2.0-8.0 Double 5.1% PFP 120Å 60°C 2.0-8.0 Double 5.1% PFP 120Å 60°C 2.0-8.0 Double 5.1% S8-Aq 120Å 60°C 2.0-8.0 Double 3.5% EC-CN 120Å 60°C 2.0-8.0 Double 3.5% Chiral-V 120Å 45°C 2.5-7.0 Prop	y 95 m2/g	Proprietary	Double	3.0-11.0	60°C	100Å	HPH-C18		
Best for polar compounds (HILIC) HILIC 120Å 60°C 0.0°8.0 N/A N/A HILIC-Z 120Å 80°C 3.0°11.0 Proprietary Proprietary HILIC-OHS 120Å 45°C 1.0°7.0 Double Proprietary Best for alternative selectivity Bonus-RP 120Å 60°C 2.0°8.0 Double 5.1% PFP 120Å 60°C 2.0°8.0 Double 5.1% S8-Aq 120Å 60°C 2.0°8.0 Double 9% S8-Aq 120Å 60°C 2.0°8.0 Double 3.5% Chiral-T 120Å 60°C 2.0°8.0 Double 3.5%	y 95 m2/g	Proprietary	Double	3.0-11.0	60°C	100Å	HPH-CS	Best for high-pH mobile phases	
Best for polar compounds (HILIC) HILIC-Z 120Å 80°C 3.0-11.0 Proprietary Proprietary HILIC-DHS 120Å 45°C 1.0-7.0 Double Proprietary Benus-RP 120Å 60°C 2.0-9.0 Triple 9.5% PFP 120Å 60°C 2.0-8.0 Double 5.1% Benyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% S8-Aq 120Å 60°C 2.0-8.0 Double 9% Chiral-T 120Å 60°C 2.0-8.0 Double 3.5% Chiral-V 120Å 60°C 2.0-8.0 Double 3.5%	y 95 m2/g	Proprietary	Double	2.0-8.0	60°C	120Å	CS-C18	Best for basic compounds at low pH	
HILIC-DHS 120Å 45°C 1.0-7.0 Double Proprietary Bonus-RP 120Å 60°C 2.0-9.0 Triple 9.5% PFP 120Å 60°C 2.0-8.0 Double 5.1% Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% SB-Aq 120Å 60°C 2.0-8.0 Double 9% Chiral-T 120Å 60°C 2.0-8.0 Double 9% Chiral-V 120Å 60°C 2.0-8.0 Double 9%	130 m2/g	N/A	N/A	0.0-8.0	60°C	120Å	HILIC		
Best for elternative selectivity Bonus-RP 120Å 60°C 2.0-9.0 Triple 9.5% PFP 120Å 60°C 2.0-8.0 Double 5.1% Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% SB-Aq 120Å 60°C 2.0-8.0 Double 9% EC-CN 120Å 60°C 2.0-8.0 Double 3.5% Chiral-T 120Å 45°C 2.5-7.0 Proprietary Proprietary Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	y 130 m2/g	Proprietary	Proprietery	3.0-11.0	80°C	1:20Å	HILIC-Z	Best for polar compounds (HILIC)	
PFP 120Å 60°C 2.0-8.0 Double 5.1% Best for alternative selectivity Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% SB-Aq 120Å 80°C 1.0-8.0 No Proprietary EC-CN 120Å 60°C 2.0-8.0 Double 3.5% Chiral-T 120Å 45°C 2.5-7.0 Proprietary Proprietary Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	y 130 m/2/g	Proprietary	Double	1.0-7.0	45°C	120Å	HILIC-DHS		
Best for alternative selectivity Phenyl-Hexyl 120Å 60°C 2.0-8.0 Double 9% S8-Aq 120Å 80°C 1.0-8.0 No Proprietary EC-CN 120Å 60°C 2.0-8.0 Double 3.5% Chiral-T 120Å 45°C 2.5-7.0 Proprietary Proprietary Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	130 m2/g	9.5%	Triple	2.0-9.0	60°C	1:20Å	Bonus-RP		
SB-Aq 120Å 80°C 1.0-8.0 No Proprietary ED-CN 120Å 60°C 2.0-8.0 Double 3.5% Chiral-T 120Å 45°C 2.5-7.0 Proprietary Proprietary Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	130 m2/g	5.1%	Double	2.0-8.0	60°C	120Å	PFP		
ED-CN 120Å 60°C 2.0-8.0 Double 3.5% Chiral-T 120Å 45°C 2.5-7.0 Proprietary Proprietary Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	130 m2/g	9%	Double	2.0-8.0	60°C	120Å	Phenyl-Hexyl	Best for elternetive selectivity	
Chiral-T 120Å 45°C 2.5-7.0 Proprietary Proprietary Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	y 130 m2/g	Proprietary	No	1.0-8.0	80°C	120Å	S8-Aq		
Chiral-V 120Å 45°C 2.5-7.0 Proprietary Proprietary	130 m2/g	3.5%	Double	2.0-8.0	60°C	120Å	EC-CN		
	y 130 m2/g	Proprietary	Proprietary	2.5-7.0	45°C	1:20Å	Chiral-T		
	y 130 m2/g	Proprietary	Proprietery	2.5-7.0	45°C	120Å	Chiral-V		
	y 130 m2/g	Proprietary	Proprietery	3.0-7.0	45°C	120Å	Chiral-CD	Best for Chiral separations	
Chiral-CF 120Å 45°C 3.0-7.0 Proprietary Proprietary	y 130 m2/g	Proprietary	Proprietery	3.0-7.0	45°C	120Å	Chiral-CF		

Specifications represent typical values only

Particle	Pressure Limit
1.9 µm	1300 ber
2.7 µm	600 ber*
4 µm	600 ber

* unless otherwise noted

5

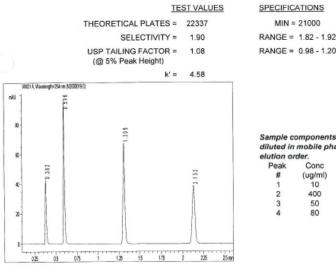
- Method development kits Selectivity, pH
- Method validation kit 3 different lots

Column Documentation

Performance report

SERIAL NUMBER: USDAZ01333

 PART NUMBER:
 959758-902


 COLUMN TYPE:
 ZORBAX RRHD Eclipse Plus C18
 2.1 x 100 mm, 1.8 µm

 PACKING LOT #:
 B09089

TEST CONDITIONS

MOBILE PHASE	=	60% Acetonitrile / 40% Water
COLUMN PRESSURE	=	517.2 Bar
COLUMN FLOW	=	0.50 ml / min
LINEAR VELOCITY	=	0.436 cm / sec
TEMPERATURE	=	AMBIENT (Nominally 23 °C)
INJECTION VOLUME	=	1 µl

QUALITY CONTROL PERFORMANCE RESULTS FOR NAPHTHALENE

Sample components with concentrations diluted in mobile phase in the following elution order. Peak Conc Sample # (ug/ml) Component 1 10 Uracil 2 400 Phenol 3 50 4-Chloro Nitrobenzene 4 80 Naphthalene

Data sheet or column guide

This booklet provides general information for all ZORBAX, Poroshell, Pursuit, and Polaris reversed-phase columns.

For additional detailed information about your specific phase or family, see: agilent.com/chem/columnchoices

Getting Started

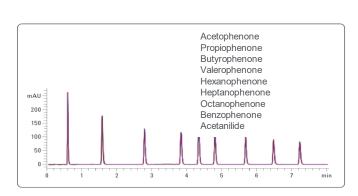
A QC Column Performance Report, including a test chromatogram, is enclosed with every Agilent column. The QC test system has been modified from a standard system to minimize system dead volume, so it may vary from the system used in your lab. This allows a better evaluation of the column and assures a more consistent product. A properly configured LC system will generate similar results to the chromatogram on your QC Performance Report.

Modern columns are robust and are designed to operate for long periods under normal chromatographic conditions. You can maximize column performance by running it within specifications. Always review the specifications before putting in place a final method.

Manufacturing test chromatogram is done on a modified LC system to minimize ECV and will differ from a typical lab HPLC

- Don't expect to get exactly the same result as the performance report
- Test column performance on your instrument to have as a reference

Column Documentation – Benchmark



Benchmark new column on your system

- 1. Test mixes
 - 1) Isocratic Standard (01080-68704)
 - 2) Checkout sample (5188-6529)
 - 3) QC reference material
- 2. Criteria like retention time, peak area, peak tailing, resolution, response, system pressure, etc.
- 3. Theoretical plates
 - Monitor column over time
 - Troubleshoot

Trick: Know what your column looks like on your instrument when it's new.

Chromatographic conditions				
Sample:	RRLC Checkout sample			
	(p/n 5188-6529)			
Column:	Agilent Poroshell 120			
	EC C18, 3 mm × 50 mm,			
	2.7 µm			
Mobile phase:	A = Water			
	B = Acetonitrile			
Gradient:	0 min 20% B			
	8 min 80% B			
Flow rate:	1.2 mL/min			
Stop time:	8 min			
Post time:	4 min			
Injection volume:	1 µL			
Column temperature:	30 °C			
DAD:	245/10 nm			
	Ref 400/100 nm			
Flow cell:	10 mm			
Peak width:	<0.025 min (10 Hz)			

Sample	Isocratic standard
oumpro	sample (Agilent part
	number 01080-
	68704)*
Mobile phase A	water = 35 %
Mobile phase B	acetonitrile = 65 %
Flow rate	1.5 ml/min
Detection wavelength	210 nm
Stop time	6 min
Post time	1 min
Column compartment	
temperature	36 °C
Gradient	start with 65 % B
	goto 95 % Bin 4
	min go to 65 % B in 5
	min
Injection volume	5 µl

*Isocratic standard sample contains 0.15 wt.% diethylphthalate, 0.15 wt.% diethylphthalate, 0.01 wt.% biphenyl and 0.03 wt.% o-terphenyl in methanol.

Column Installation Recommendations

1. Purge the pumps (connections up to the column) of any buffered mobile phases. Flush at least 5 mL of solvent before attaching the column to instrument.

Goal: Eliminate any dried out or precipitated buffer from the system so it doesn't wash onto the column and plug the frit.

2. Flush your new column with your mobile phase (compatible with the solvents the column was shipped in) at an appropriate flow rate – start slowly at 0.1 mL/min for a 2.1 mm id column, 0.2 mL/min for a 3.0 mm id column, and 0.4 mL/min for 4.6 mm id.

Goal: Avoid a pressure spike when the new mobile phase reaches the column. This occurs when the different solvents mix. The low flow rate allows this to happen without causing an unanticipated pressure change.

3. Increase the flow rate to the desired flow over a couple of minutes.

Goal: Reach final operating pressure

- 4. Once the pressure has stabilized, attach column to detector
- 5. Equilibrate column and detector with 10 column volumes of mobile phase prior to use

Goal: Reproducible chromatography from the start

Initial Column and System Equilibration* Using Buffers Successfully

Insure HPLC has required mobile phase components

In appropriate vessel, test highest % organic/buffer ratio

 Verify buffer will not precipitate. With stirring, add organic to buffer first, not vice versa

Install column – Make a good connection

Equilibrate column with, in order:

- 100% organic modifier (if brand new)
- Mobile phase <u>minus</u> buffer
- Buffered MP w/highest % organic modifier (gradient)
- Buffered MP w/lowest % organic modifier (gradient)

Inject standard or sample several times until RTs stable

• For gradient, precede former with 1-3 blank gradients

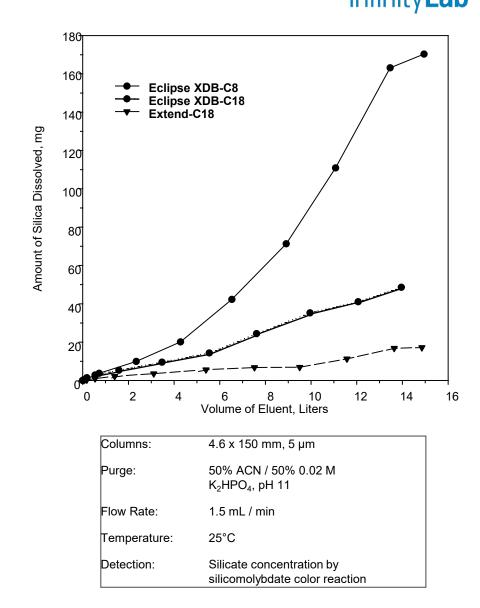
*Check appendix for shutdown instructions

LC Columns Are Not Indestructible

Columns are packed using hydraulic pressure and can be damaged by it.

Silica dissolves (slowly)... higher pH

Acid hydrolysis of bonded phase at low pH

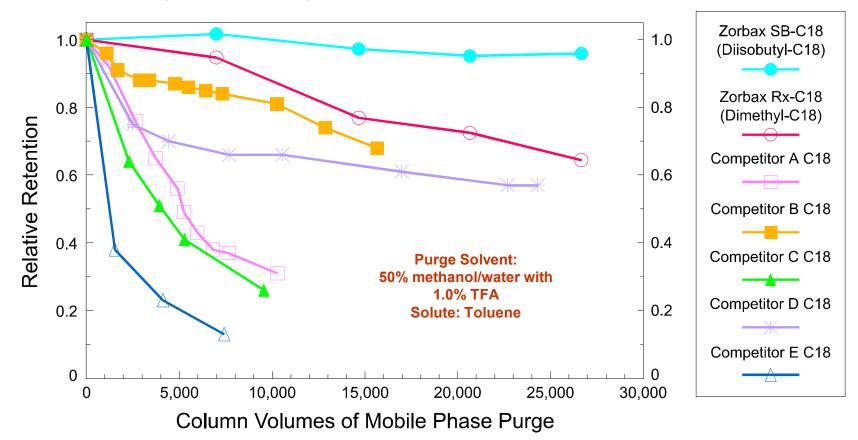

Column failure

- Void
- Contamination

Columns must be stored properly

• Check your user guide

Trick: Choose a mobile phase that is right for your column Tip: Keep record/history of your column



LC Columns Are Not Indestructible

For maximum column lifetime, match column to pH of mobile phase

low pH and high temperature (pH 0.8, 90°C)

Kirkland, J.J. and J.W. Henderson, Journal of Chromatographic Science, 32 (1994) 473-480.

You Have Your Column, What's Next?

Method conditions

- Flow rate
- Load
- Temperature
- Retention

What's in your mobile phase?

- Organic
- Buffers
 - pH
 - Tables
- How to make

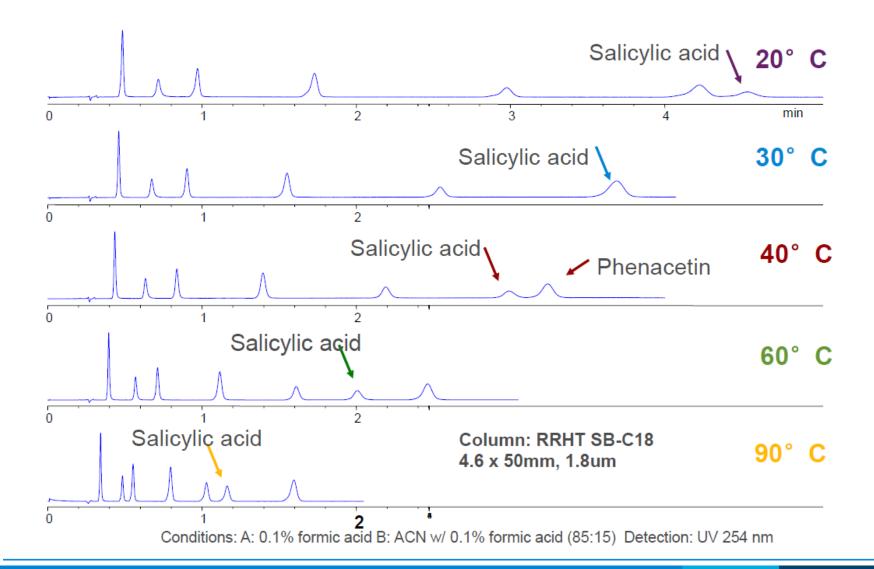
Tip: For good chromatography the trick is to match your conditions to your column choice.

Column ID; Match Conditions

Column id	Column volume	Peak volume, k=1	Typical injection volume.*	Typical injection volume range	Flow rate for equivalent v^{**}
4.6 mm	1500 μL	148 μL	20 μL	5–50 μL	1.0 mL/min
3.0 mm	640 μL	44 μL	10 μL	3–30 μL	0.42 mL/min
2.1 mm	320 μL	22 μL	2 μL	0.5–15 μL	0.21 mL/min
1.0 mm	70 μL	4 μL	0.5 μL	0.1–3 μL	47 μL/min
0.5 mm	15 μL	1 μL	150 nL	40–500 nL	12 μL/min
0.3 mm	6 μL	0.3 μL	50 nL	15–250 nL	4.2 μL/min
0.1 mm	700 nL	32 nL	10 nL	1–10 nL	472 nL/min
0.075 mm	400 nL	18 nL	2 nL	0.5–5 nL	266 nL/min

Column length = 150 mm, N =13,000

Tips


* Typical injection volume = 10–30% of peak volume of first eluting peak

** Maintain equivalent mobile phase linear velocity when scaling column diameter

Effect of Temperature on Separation

Separation Conditions That Cause Changes in Retention*

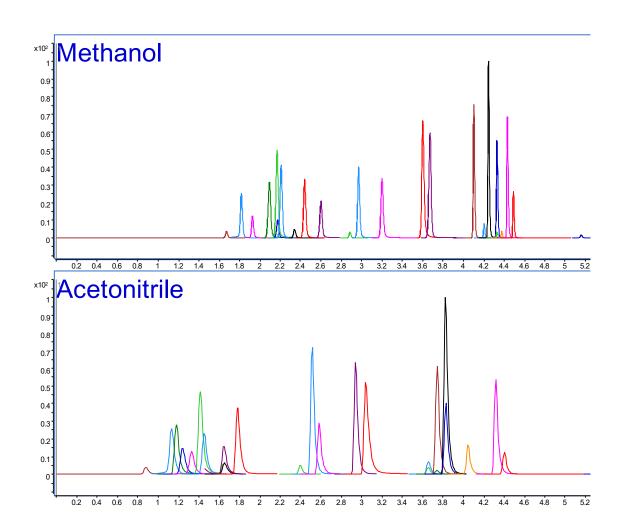
Condition	Change	Retention	Change
Flow rate	+/- 1%	t _R	+/- 1%
Temperature	+/- 1 °C	t _R	+/- 1 to 2%
% Organic	+/- 1%	t _R	+/- 5 to 10%
рН	+/- 0.01%	t R	+/- 0 to 1%

*excerpted from "Troubleshooting HPLC Systems", J. W. Dolan and L. R. Snyder, p 442.

Tip: Minor changes in conditions can affect retention

Your Mobile Phase

- What's in your mobile phase?
 - Organic
 - Buffers
 - pH
 - Tables
- How to make
- Equilibration
- Shutdown


Comparison of 25 Component Mixture using Methanol or Acetonitrile as the Mobile Phase

Organic choice considerations:

- Selectivity differences
- Methanol -
 - Higher pressure
 - In general, better peak shape with bases
 - Generally more miscible
 - Protic solvent
 - Weaker than ACN
- Acetonitrile
 - Lower pressure
 - Aprotic solvent
 - Wider UV window than MeOH

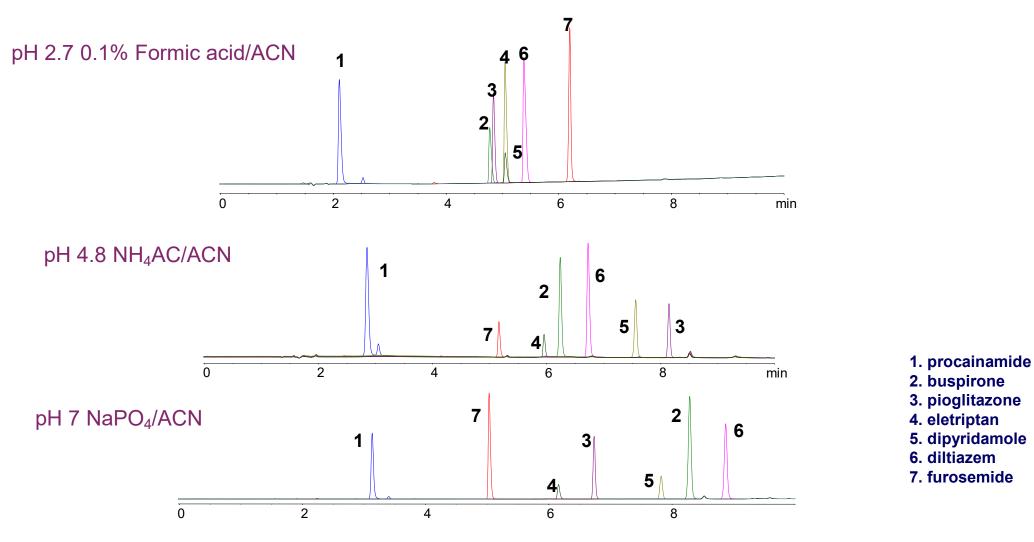
Tip: Consider a blend

Mobile Phase pH and Buffers Why are they important in HPLC?

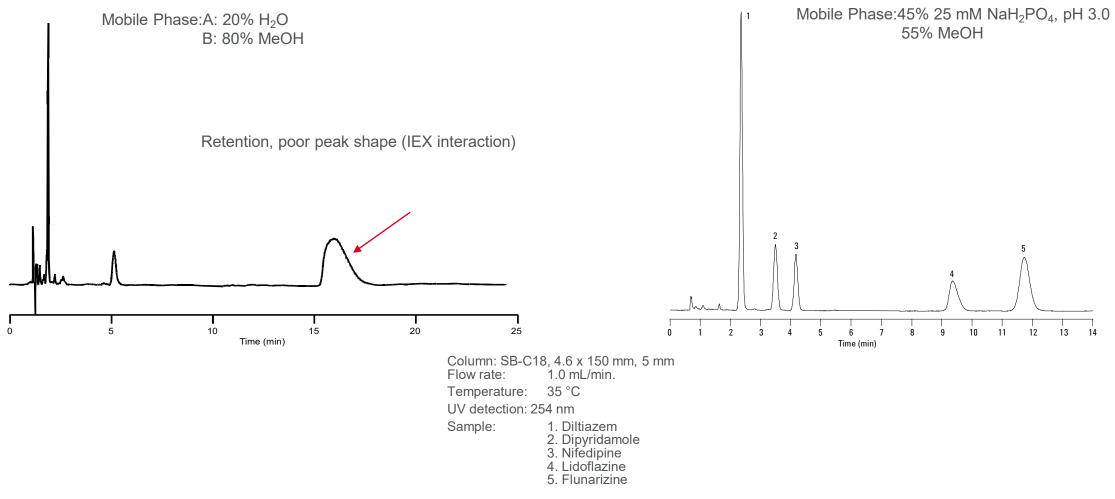
рΗ

- Silica surface of column
- Sample components of interest

Buffers


- Resist changes in pH and maintain retention
- Improve peak shape for ionizable compounds
 Column lifetime
- Low pH strips bonded phase
- High pH dissolves silica

Selectivity and Resolution Can Change with pH



Conditions: Column: Eclipse Plus C18 4.6 x 100mm, 5um Gradient: 10 – 90% in 10 minutes Detection: UV 254 nm

"I Don't Have Time to Make Buffers or Adjust pH...!"

Trick: Know your sample Tip: Know if your detector is compatible with the buffer you choose

Buffer Preparation Does It Make a Difference?

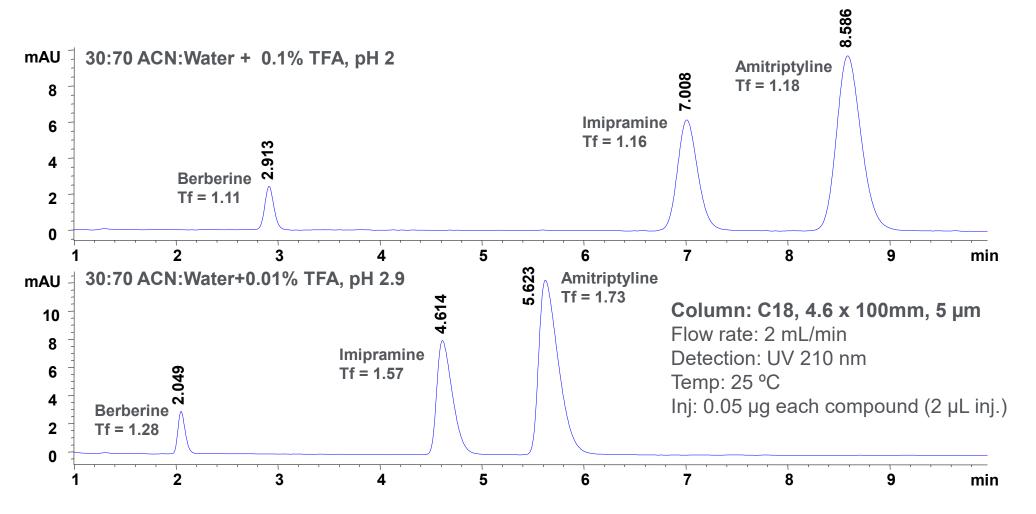
- 1. Dissolve salt in water using a 1 L or 2 L beaker. Use appropriate volume to leave space for pH adjustment. Equilibrate to RT for maximum accuracy.
- 2. Calibrate pH meter. Use 2-level calibration & bracket desired pH. Use appropriate audit solution to monitor statistical control (e.g., potassium hydrogen tartrate, saturated solution, pH = 3.56).
- 3. Adjust salt solution to desired pH. Minimize amount of time electrode spends in buffer solution (contamination). Avoid overshooting and re-adjustment (ionic strength differences can arise).
- 4. Transfer pH-adjusted buffer solution quantitatively to volumetric flask, dilute to volume, and mix.
- 5. Filter through 0.45 µm filter (discard first ~50 mL filtrate). Rinse solvent reservoir with small volume of filtrate and discard. Fill reservoir with remaining filtrate or prepare premix with organic modifier.
 - Agilent solvent filtration kit, 250 mL reservoir, 1000 mL flask, P/N 3150-0577
 - Nylon filter membranes, 47 mm, 0.45 μm pore size, P/N 9301-0895 (not for proteins!)

Trick: For gradient methods, avoid buffer precipitation by testing the solubility of buffered mobile phase component with highest % organic used. Always add organic to buffer with stirring, not vice versa.

Tip: Filtering is important - small particles in MP can permanently block capillaries in degasser.

Buffer Options

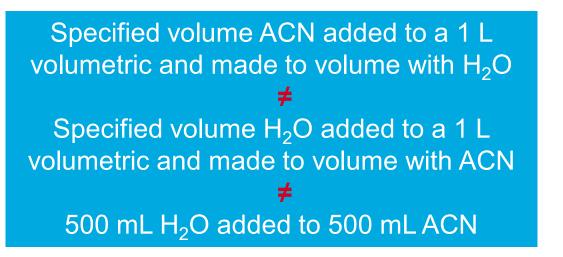
Agilent Infinity Lab


Nonvolatile		рК _а	Buffer range
Phosphate	$H_3PO_4 \qquad H_2PO_4^-$	pK ₁ = 2.1	1.1–3.1
	$H_2PO_4^- \rightleftharpoons HPO_4^{-2}$	pK ₂ = 7.2	6.2–8.2
	$HPO_4^{-2} \rightleftharpoons PO_4^{-3}$	рК ₃ = 12.3	11.3–13.3
Citrate	CH₂COOH	pK ₁ = 3.1	2.1–4.1
	носсоон	рК ₂ = 4.7	3.7–5.7
	CH₂ÇOOH	рК ₃ = 5.4	4.4–6.4
Borate	H ₃ BO ₃	pK ₁ = 9.2	8.2–10.2
Volatile		рК _а	Buffer range
Trifluroacetate	F ₃ CCOOH	pK ₁ = 0.5	xx–1.5
Formate	НСООН	pK ₁ = 3.8	2.8–4.8
Acetate	CH₃COOH	pK ₁ = 4.8	3.8–5.8
Ammonium	NH4 ⁺	pK ₁ = 9.2	8.2–10.2

Tip: Make sure you know the buffering range of your buffer!

Change in Volatile Buffer Concentration and Shift in Retention Time and Peak Shape

Tip: Volatile – It's definition is evaporating rapidly, passing off rapidly in the form of vapor...



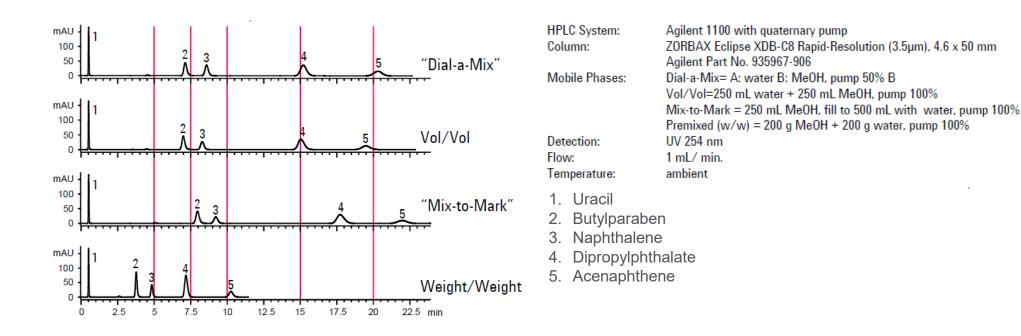
Mobile Phase Preparation

Infinity Lab

- HPLC grade or better
- Buffer prep procedure
 - Be consistent
- Document process

Volume % of solvents can depend on preparation

- Relative quantities of each affects degree of contraction
- Temperature


Tips

- 1. Small changes in mobile phase strength can have a large effect on retention
- 2. Immiscible solvent flow can cause high pressure and trigger system shutdown.

Mobile Phase Preparation Effect on chromatography

Method used to prepare mobile phase can significantly affect elution pattern

Trick: Avoid this potential pitfall by being consistent. Tip: W/w is more accurate than v/v.

Effect of Mobile Phase Preparation on Chromatography, Pub. No. 5988-6476EN

Consider Your Sample

Туре

- Ionizable?
- Compound type; acid, base, neutral

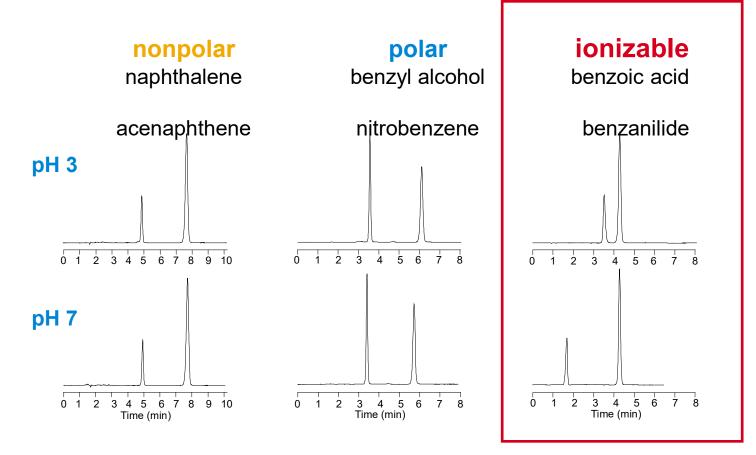
Solubility in mobile phase

- Test
 - If it's not aqueous soluble and your starting mobile phase is 90%H2O:10%ACN, precipitation likely on inlet frit of your column

Size/MW

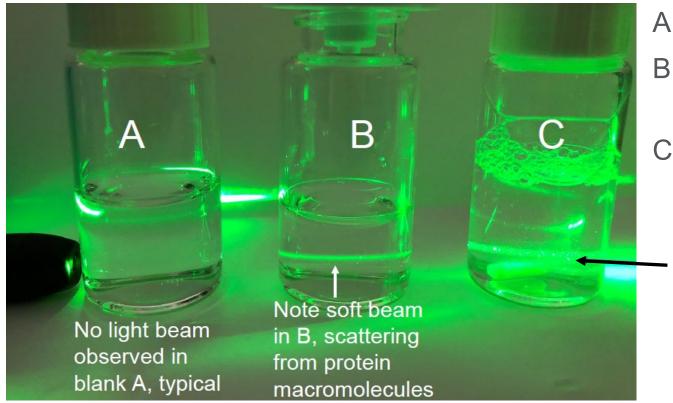
• Pore size

My sample is clean - or is it?


Is RP the best choice?

When Does pH Affect Resolution?

Compound type comparison

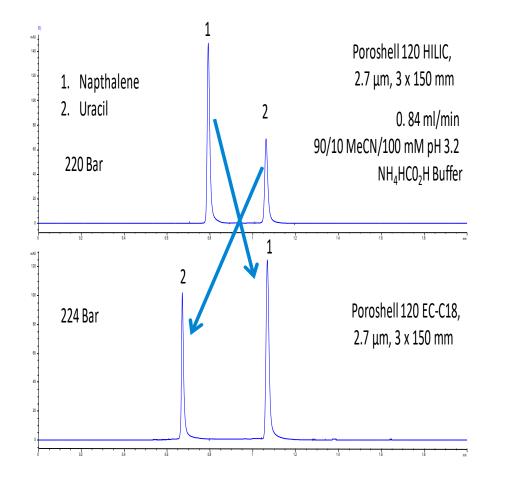


Tip: Ionizable compounds (acids and bases) can change retention and selectivity with changes in pH

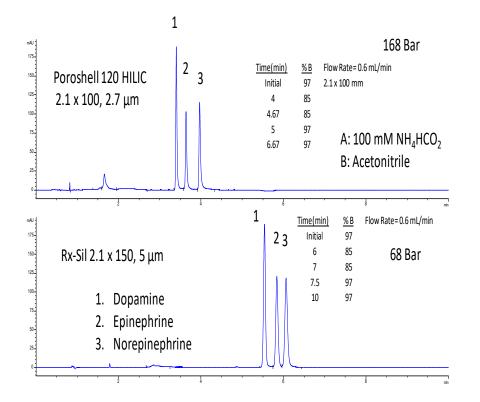
I Don't Have to Filter, My Sample Is Clean or... Is It?

- A. PBS used as diluent
- B. 2mg/ml egg albumin after GF filtration1) GF = glass over regen. cellulose
- C. 2mg/ml egg albumin chilled overnight

Bright "sparkles" = insoluble debris and agglomerated proteins


CAUTION: Use appropriate safety precautions when using laser pointer for sample inspection!

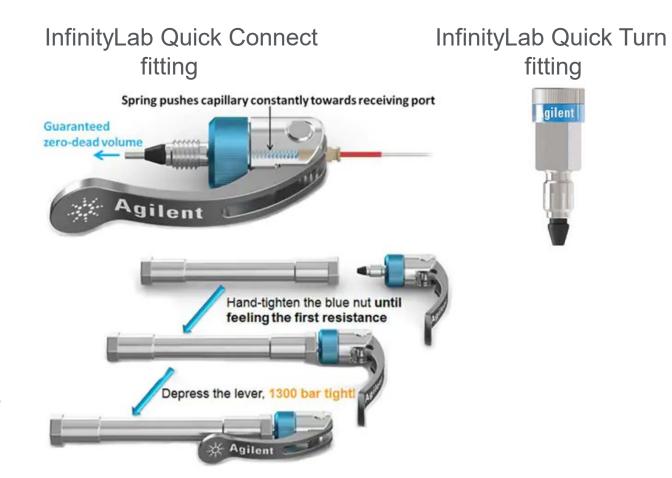
Trick: Use a laser pointer to check sample and blank quality.



Is Reversed Phase the Right Choice?

Overlay of HILIC Separation of Catecholamines (Poroshell 120 2.1 x 100, 2.7 μm), (Rx-Sil 2.1 x 150, 5 μm)

"Hydrophobic Interaction Chromatography (HILIC) using Agilent Poroshell 120 HILIC" William J. Long, Anne E. Mack, October 5, 2012, 5991-1242EN

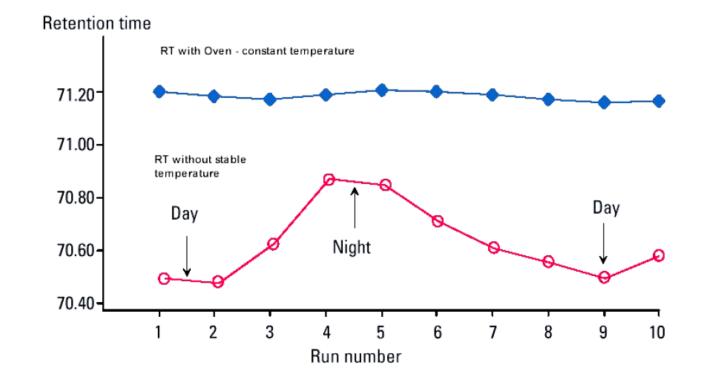


Instrument

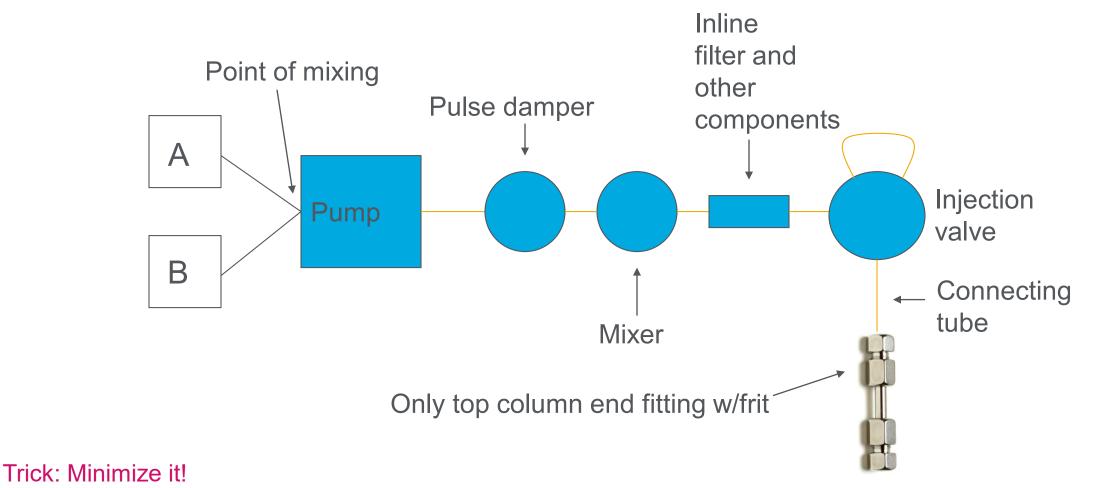
HPLC or UHPLC

- Pressure
- Particle size
- Column dimension
- Dwell volume
- Extra column volume
- Column oven
- Connections
- Use shortest length of tubing possible
- Quick connect and quick turn

Do you need an inline filter or guard column?

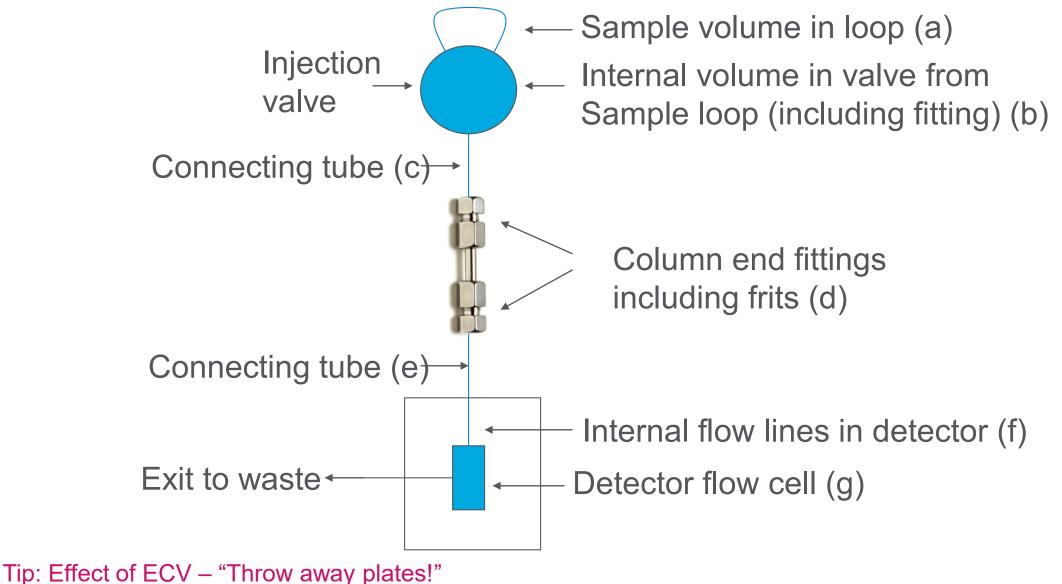

Tip: Attend upcoming webinar, November 17th @1 EST: <u>All About LC Connections – The Importance of Making a Great One</u>

Column Oven Control the Temperature



Tip: Constant temperature = constant retention

Dwell Volume of HPLC System with Low Pressure Mixing aka Gradient Delay Volume



Tip: Check the appendix for instructions on determining your system's dwell volume and document it.

Extracolumn Volumes in HPLC Sample Flow System

Column Protection

Inline Filters

- Extend column life
- Easy to change
- Not intended to replace sample cleanup

UHPLC options

RRLC, 0.2µm, max 600 bar

- 4.6mm frit id, 5067-1553
- 2.1mm frit id, 5067-1551

1290 Infinity LC, 0.3µm, max 1200 bar

- 5067-4638, replacement frits 5023-0271
 1290 Infinity II, 0.3µm, max 1300 bar
- 5067-6189, replacement frits 5023-0271

Guard columns

Extend column life

Less expensive than analytical column Match analytical column packing material

 Traps material that could bind strongly or irreversibly to analytical column
 Inlet frit traps particulates

Cartridge format 340 bar, 200 bar w/PEEK fitting

Individual guard column 600-1300 bar

Tip: Consider the cost vs. benefit

Remember Your

Column Choice

Method conditions

Mobile phase

Sample

Instrument

... all contribute to good chromatography. The more you know about each of them and how they can affect your chromatography, the better your chances of success are.

Exclusive Offer for Attending Agilent Chemistries Webinars

Infinity Lab

Receive a 25% discount off any Agilent J&W GC Columns, Agilent LC Columns, Sample Prep Products, Chemical Standards and your most often used GC and LC supplies*

- Discount applies on future purchase of up to \$3,000 (USD)
- Offer good 30 days from the Agilent webinar
- Use promotion code 9969

*Some restrictions apply on supplies

Contact Agilent Chemistries and Supplies Technical Support

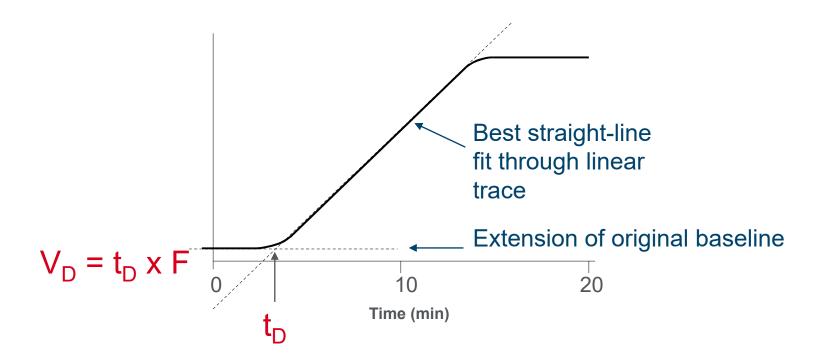
1-800-227-9770 Option 3, Option 3:

- Option 1 for GC/GCMS Columns and Supplies
- Option 2 for LC/LCMS Columns and Supplies
- Option 3 for Sample Preparation, Filtration and QuEChERS
- Option 4 for Spectroscopy Supplies
- Option 5 for Chemical Standards

- gc-column-support@Agilent.com
- <u>lc-column-support@agilent.com</u>
- <u>spp-support@agilent.com</u>
- spectro-supplies-support@agilent.com
- <u>chem-standards-support@agilent.com</u>

Appendix

Determining the Dwell Volume of Your System



- Replace column with short piece of HPLC stainless steel tubing
- <u>Prepare mobile phase components</u>
 A. Water, UV-transparent
 B. Water with 0.2% acetone, UV-absorbing
- Monitor at 265 nm
- Adjust attenuation so that both 100% A and 100% B are on scale
- Run gradient profile 0 to 100% B/10 min at 1.0 mL/min
- Record

Measuring Dwell Volume (V_D)

- Intersection of the two lines identifies dwell time (tD)
- Dwell volume is equal to product of the flow rate and the dwell time.

If $V_{D1} > V_{D2}$

Compensate for longer V_{D1} by adding an isocratic hold to V_{D2} , such that Hold + V_{D2} = V_{D1}

If $V_{D1} < V_{D2}$ Delay injection, such that V_{D2} - delay = V_{D1}

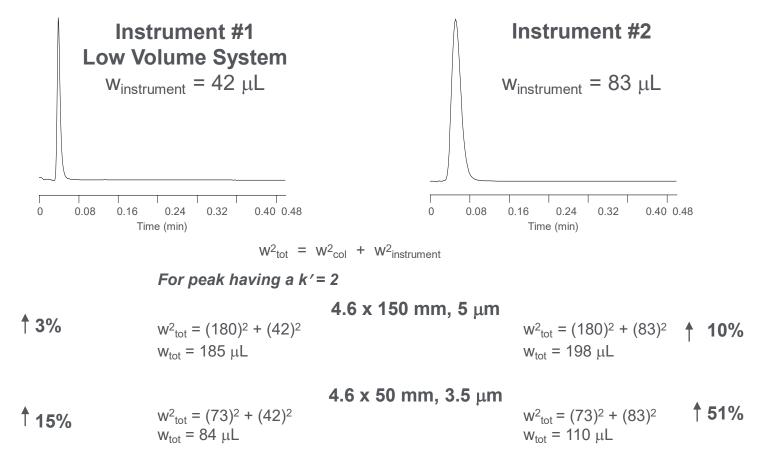
001014P1.PPT

How to Estimate the Extracolumn Volume of Your System

One way:

- Remove HPLC column from instrument
- Join injector and detector tubing with zero-dead-volume (ZDV) union
- Inject (0.5–2 μ L) of toluene in 100% acetonitrile
- Determine width of peak at base (Winstrument)
- Peak bandwidth follows:

Make concentration about 1–5 mg/mL


$$W^{2}_{tot} = W^{2}_{col} + W^{2}_{instrument}$$

Extra Column Volume and Peak Shape

Toluene in Acetonitrile

Method Development Kits

	Ag	ilent	
In	fini	ity	Lab

Part No.	Kits	Description
5190-6160	P120, USP method development kit, 3.0 x 100 mm	InfinityLab Poroshell 120 EC-C18, EC-C8, EC-CN columns, 3.0 x 100 mm
5190-6159	P120, USP method development kit, 4.6 x 100 mm	InfinityLab Poroshell 120 EC-C18, EC-C8, EC-CN columns, 4.6 x 100 mm
5190-6155	P120, Selectivity method development kit, 2.1 x 50 mm	InfinityLab Poroshell 120 EC-C18, Phenyl-Hexyl, Bonus RP columns, 2.1 x 50 mm
5190-6156	P120, Selectivity method development kit, 4.6 x 50 mm	InfinityLab Poroshell 120 EC-C18, Phenyl-Hexyl, Bonus RP columns, 4.6 x 50 mm
5190-6157	P120, Aqueous method development kit, 2.1 x 50 mm	InfinityLab Poroshell 120 SB-Aq, Phenyl-Hexyl, Bonus RP columns, 2.1 x 50 mm
5190-6158	P120, Aqueous method development kit, 4.6 x 50 mm	InfinityLab Poroshell 120 SB-Aq, Phenyl-Hexyl, and Bonus RP columns, 4.6 x 50 mm
5190-6153	RRHD Eclipse Plus method development kit, 2.1 mm id	RRHD Eclipse Plus C18, Eclipse Plus C8, Eclipse Plus Phenyl-Hexyl, 2.1 x 50 mm columns
5190-6154	RRHD Aqueous method development kit, 2.1 mm id	RRHD SB-Aq, Bonus RP, and Eclipse Plus Phenyl-Hexyl columnc 2.1 x 50 mm
5190-6152	RRHD pH method development kit, 2.1 mm id	RRHD StableBond SB-C18, Eclipse Pluse C18, and Extend-C18 column, 2.1 x 50 mm
5190-6160	P120, USP method development kit, 3.0 x 100 mm	InfinityLab Poroshell 120 EC-C18, EC-C8, EC-CN columns, 3.0 x 100 mm
5190-6159	P120, USP method development kit, 4.6 x 100 mm	InfinityLab Poroshell 120 EC-C18, EC-C8, EC-CN columns, 4.6 x 100 mm
5190-6155	P120, Selectivity method development kit, 2.1 x 50 mm	InfinityLab Poroshell 120 EC-C18, Phenyl-Hexyl, Bonus RP columns, 2.1 x 50 mm
5190-6156	P120, Selectivity method development kit, 4.6 x 50 mm	InfinityLab Poroshell 120 EC-C18, Phenyl-Hexyl, Bonus RP columns, 4.6 x 50 mm
5190-6157	P120, Aqueous method development kit, 2.1 x 50 mm	InfinityLab Poroshell 120 SB-Aq, Phenyl-Hexyl, Bonus RP columns, 2.1 x 50 mm

Shutdown state

Next day use—using same buffers:

• Pump the mobile phase slowly (for example, 0.01–0.1 mL/min).

When flushing column, or for longer term column storage:

• Flush with 20/80 organic/water, then 80/20 organic/water or 100% organic.

Instrument flushing

Replace column with capillary tubing. Leave disconnected from detector.

Flush pumps with water, then connect capillary tubing to detector.

Inject water 2–3 times at maximum injection volume setting.

Flush all pumps with 100% organic for long-term storage.

