Errata Notice

This document contains references to PSS or Polymer Standards Service. Please note that PSS is now Agilent. This document will be republished as an Agilent document in the future.

10026 - Column Application Note Characterization of Poly(phenyl acetylene)

Polyphenyl acetylene (PPA) has well-spread electron clouds resulting in large values of linear as well as nonlinear susceptibility. These polymers can be modified easily by doping with other materials and/or attaching appropriate side groups to the main chain. PPA are also used to create carbo nanotubes (CNT).

Experimental Setup

Tetrahydrofuran Mobile Phase: Stationary Phase: PSS SDV Flow rate [mL/min]: 1,00 Temperature [°C]: 25

Shodex-RI71 Detection:

Calibration: ReadyCal-Kit Poly(styrene)

Data processing: **PSS WinGPC**

Recommandations for Sample Concentration

narrow PDI

M 100 Da - 10 000 Da: 2 g/L 1-2 g/L M 10 000 Da - 1 000 000 Da:

M > 1 000 000 Da: 0.5 g/L or less

broad PDI (>1.5)

all molar masses: 3.0 - 5.0 g/L

Injection volume [µL]: 100

Suitable Columns

low molecular weights: P/N 201-0001 (set of 3) OR sda083003lis (1 linear) P/N 201-0002 (set of 2) OR sda083005lim (1 linear) medium molecular weights: P/N 201-0003 (set of 3) OR sda083005lxl (1 linear) P/N 202-0001 (set of 3) high molecular weights:

ultrahigh molecular weights:

Elugram and Calibration separation on PSS SDV

Molar Mass Distribution separation on PSS SDV

