Errata Notice This document contains references to PSS or Polymer Standards Service. Please note that PSS is now Agilent. This document will be republished as an Agilent document in the future. Agilent # # 10299 - Column Application Note Characterization of Poly(isoprene-1.4) One of the most well known natural polymers is polyisoprene, or natural rubber. Natural rubber is a polymer of (mostly) cis-1,4-polyisoprene with a molecular weight of 100 000 to 1 000 000 Da. Gutta percha is composed of trans-1,4-polyisoprene, a structural isomer which has similar, but not identical properties. Natural rubber is an elastomer and a thermoplastic. If rubber is vulcanized it will turn into a thermoset. Most rubber in everyday use is vulcanized to a point where it shares properties of both; i.e., if it is heated and cooled, it is degraded but not destroyed. Polyisoprene can be made synthetically by polymerization of isoprene using Ziegler-Natta catalysts. ### **Experimental Setup** Mobile Phase: Tetrahydrofuran Stationary Phase: PSS SDV Flow rate [mL/min]: 1,00 Temperature [°C]: 25 Detection: GPC1200 Refractive index Kit Poly(isoprene-1.4) Data processing: PSS WinGPC ## **Recommandations for Sample Concentration** narrow PDI M 100 Da - 10 000 Da: 2 g/L M 10 000 Da - 1 000 000 Da: 1-2 g/L M > 1 000 000 Da: 0.5 g/L or less broad PDI (>1.5) all molar masses: 3.0 - 5.0 g/L Injection volume [µL]: 20 #### **Suitable Columns** low molecular weights: P/N 201-0001 (set of 3) OR sda083003lis (1 linear) medium molecular weights: P/N 201-0002 (set of 2) OR sda083005lim (1 linear) Overlay of different molar masses. separation on PSS SDV separation on PSS SDV