

GC coupling to LC-MS instruments

Expand your mass spectrometric "view" with SICRIT®

Plasmion GmbH Am Mittleren Moos 48, 86167 Augsburg

Tel.: +49 821 2071 3355 Mail: info@plasmion.de Web: www.plasmion.de

Dr. Jan-Christoph Wolf

05.05.2020

The patented flow-through geometry of the SICRIT[®] ionization source is new and unique

VS.

With conventional atmospheric pressure methods, the **ions** are mostly **formed outside the inlet of an MS**. This implies that the sample (e.g. coffee) cannot be analyzed directly, but is usually "sprayed" into the MS in the form of a liquid extract via the ionization source

The SICRIT[®] (Soft Ionization by Chemical Reaction In Transfer) ionization source is **interfaced with** the atmospheric pressure **inlet of the MS** and ionizes every substance which is drawn into the MS by its inherent vacuum.

SICRIT[®] Characteristics

- Simple extension of MS inlet
- Concentric dielectric barrier discharge
- Sample ionized during transfer into MS
- Soft ionization by proton transfer and UV light
- No consumables

- 2 -

Reducing complexity of mass spectrometry in terms of preparation, execution and evaluation

İ

Increased Sensitivity

The ionization within a closed chamber in extension of the inlet prevents columbic repulsion before the inlet and enables higher sensitivities

No Sample Preparation

The ambient character of the ionization source allows to analyze solid, liquid, or gaseous samples in room air without sample preparation (direct screening)

No Fragmentation

The unique shape of the cold plasma enables a soft ionization of analytes and avoids fragmentation

Enhanced Range of Analytes

Three simultaneous ionization mechanisms expand the range of detectable analytes, covering polar and non-polar components

Flexible Coupling

It is the only technique that provides a seamless coupling with all chromatography methods like GC, LC or SFC Detailed in the following

• Direct screening

• GC/MS coupling

- LC/MS coupling
- SFC/MS coupling
- Laser ablation imaging

Details per application available upon request

Three simultaneous ionization mechanisms expand the range of detectable analytes (1/3)

SICRIT[®] Ionization Mechanism:

- Discharge forms excited carrier gas species e.g. N₂⁺
- Those may interact with water and form hydronium clusters
- Hydronium clusters can also be formed directly in the discharge
- Finally hydronium clusters will protonate the analyte

Three simultaneous ionization mechanisms expand the range of detectable analytes (2/3)

SICRIT[®] Ionization Mechanism:

- Discharge forms excited carrier gas species e.g. N₂⁺
- Those may interact with water and form hydronium clusters
- Hydronium clusters will protonate the analyte
- Reactive species may directly interact with the analyte and form cations

Three simultaneous ionization mechanisms expand the range of detectable analytes (3/3)

SICRIT[®] Ionization Mechanism:

- Discharge emits highly energetic UV light that can ionize the molecule directly or via charge transfer
- Depending on the ion's chemistry, the radical cation may fragment, stabilize by hydrid abstraction or prevail

Status Quo

GC-MS and LC-MS represent two different worlds, with each having its own dis-/advantages

LC-Mass Spectrometry (MS)

Innovation

SICRIT[®] provides a link between both worlds which enables to combine all advantages in one solution

SICRIT[®]-GC-Mass Spectrometry (MS)

Advantages 🔿 Disadvantages

Working Principle

Via its GC-SPME-Module, SICRIT[®] allows for a fast and easy coupling between LC-MS and GC

Compatibility

The SICRIT[®] technology can be coupled with almost every LC-MS^{*} of all major vendors

Agilent Technologies	AB SCIEX	Thermo Fisher SCIENTIFIC	Waters THE SCIENCE OF WHAT'S POSSIBLE."	BRUKER	🕀 SHIMADZU
			Picture coming soon	Picture coming soon	Picture coming soon
Agilent-SICRIT- Coupling	Sciex-SICRIT- Coupling	Thermo-SICRIT- Coupling	Waters-SICRIT- Coupling	Bruker-SICRIT- Coupling	Shimadzu-SICRIT- Coupling

* Couplings to specific LC-MS systems that are not yet available can be provided upon request

Applications

SICRIT[®] enables to flexibly combine the most suitable instruments for your application – vendor independent

Applications

SICRIT[®] enables various applications across routine and advanced research analyses

- In routine analyses, most frequently the focus is on searching for certain analytes and thus to perform a targeted high sensitivity analysis. To do so, a Triple-Quad-MS is mostly the preferred option.
- However, there are also some cases, where High-Resolution-MS are introduced to perform routine analysis. In fact, High-Resolution-MS is gaining more and more attention

Advanced Research Analyses

In **research analyses**, it is often not one specific application that is to be performed with a respective MS system. The **range of applications** may go **from targeted to** completely **untargeted** search for analytes. Thus, not only high sensitivity but also **high resolution** is **important**, to enable a rigor identification of the respective analytes

1 GC-SICRIT[®]-MS applied for known tasks in routine pesticide analyses

Setup:

GC-MS coupling with SICRIT[®] and SCIEX 6500 Q-Trap; Agilent 7890 GC with PAL autosampler; He as carrier gas, Splitless 1 μ l injection; DB5-MS column; individually optimized MRMs

List of measured pesticides:

Substance	Sum Form.	Substance	Sum Form.
2,4-D-isobutylester	$C_{12}H_{14}CI_2O_3$	Dieldrin	C ₁₂ H ₈ Cl ₆ O
3-decen-2-one	C ₁₀ H ₁₈ O	Diflufenican	$C_{19}H_{11}F_5N_2O_2$
Acetamiprid	$C_{10}H_{11}CIN_4$	DMSA	$C_4H_6O_4S_2$
Atrazine	C ₈ H ₁₄ CIN ₅	EPN	C ₁₄ H ₁₄ NO ₄ PS
Azoxystrobin	C ₂₂ H ₁₇ N ₃ O ₅	Flurprimidol	$C_{15}H_{15}F_{3}N_{2}O_{2}$
Beflubutamid	$C_{18}H_{17}F_4NO_2$	Genite	C ₁₂ H ₈ Cl ₂ O ₃ S
Chlorpyrifos	C ₉ H ₁₁ Cl ₃ NO ₃ PS	Hexaconazole	$C_{14}H_{17}CI_2N_3O$
Chlorpyrifos- methyl	C ₇ H ₇ Cl ₃ NO ₃ PS	Methamidophos	$C_2H_8NO_2PS$
Cypermethrin	$C_{22}H_{19}CI_2NO_3$	Myclobutanil	C ₁₅ H ₁₇ CIN ₄
DDE-PP	C14H°CI	Omethoate	$C_5H_{12}NO_4PS$
Deltamethrin (cis)	CooH40BroNOo	Pirimiphos-ethyl	$C_{13}H_{24}N_3O_3PS$
Demeton-S-methyl	$C_{e}H_{15}O_{3}PS_{2}$	Pirimiphos-methyl	$C_{11}H_{20}N_3O_3PS$
Dichlobenil	C ₇ H ₃ Cl ₂ N	Pyrazophos	$C_{14}H_{20}N_{3}O_{5}PS$
Dichlorvos	C₄H ₇ Cl ₂ O₄P	Quinalphos	$C_{12}H_{15}N_2O_3PS$
Simeconazole	C ₁₄ H ₂₀ FN ₃ OSi	Triadimefon	$C_{14}H_{16}CIN_3O_2$
Vinclozolin	C ₁₂ H ₀ Cl ₂ NO ₃		

Good s/n-values and peak shape for most pesticides even at low concentration levels

Routine Analyses - Comparison

Direct comparison shows that GC-SICRIT[®]-MS is more sensitive for most pesticides than GC-APCI

Comparison Setup

 Comparison of S/N ratio between GC-SICRIT[®]-MS and GC-APCI –

S/N ratios are usually not fully comparable, but show a general trend

- Data measured on two comparable Triple-Q systems of different manufacturers (SICRIT[®] on SCIEX 6500+ QTRAP vs. competitor)
- Both systems with **1 pg on column**

Component	GC-SICRIT-MS	GC-APCI-MS
2,4-D-isobutylester	5	5.9
3-decen-2-one	188.4	-
Acetamiprid	314.5	2.9
Atrazine	482.3	19.6
Azoxystrobin	455.2	97.5
Beflubutamid	2874.6	2.2
Chlorpyrifos	719.5	9.5
Chlorpyrifos-methyl	352.7	53.1
Cypermethrin(sum)	205.6	41.9
DDE-PP	25.9	43.4
Deltamethrin	112.2	21.7
Demeton-S-methyl	66.5	9.9
Dichlobenil	46.3	28.9
Dichlorvos	89.3	163.8
Dieldrin	508.7	9.5
Diflufenican	825.7	242.9
DMSA	761.7	19.4
EPN	422.2	32.9
Flurprimidol	283.7	308.5
Genite	16.8	48.1
Hexaconazole	65.6	12.8
Methamidophos	146.7	3558
Myclobutanil	391.6	111.2
Omethoate	703.1	31.2
Pirimiphos-ethyl	570.2	16.5
Pirimiphos-methyl	332.3	94.7
Pyrazophos	729.8	66.9
Quinalphos	172	12983.6
Simeconazole	129.4	22361.8
Triadimefon	257.1	7.9
Vinclozolin	2.4	1.4

Analysis of Nitrosamines: a substance class of pharmaceutical concern

Chromatogram of EPA 521 Nitrosamine standard

Counts vs. Acquisition Time (min)

In contrast to LC-ESI/APCI, GC-SICRIT[®] can detect both Valsartan and Nitrosamines

Comparison of LC-MS vs GC-SICRIT-MS (SCIEX X500R)

LODs for Nitrosamines (Ultivo QQQ)*

Substance	LOD (fg)
N-Nitrosodimethylamine	1205
N-Nitrosodibutylamine	91
N-Nitrosodi-n-propylamine	139
N-Nitrosomethylethylamine	379
N-Nitrosodiethylamine	69
1-Nitrosopyrrolidine	376
1-Nitrosopiperidine	540

 * Individual quan- and qualifier MRMs; LOD calculated according to 3σ blank; lowest calibration point 200 fg

Conclusion

- GC-SICRIT®-MS is perfectly suited for routine Nitrosamines measurement
- ~30x more sensitive than LC-APCI on the same instrument (X500R)
- Can also detect active ingredient "Valsartan" which is not detected via APCI
- QQQ method reveals LODs in the ppt range

1 SICRIT can even be used to detect perchlorinated pesticides

Setup:

GC-MS coupling with SICRIT and Orbitrap LTQ XL; UltraTrace GC autosampler; He as carrier gas; Splitless 1 µl injection; DB5-MS column

List of measured pesticides:

Substance	Sum Form.	Substance	Sum Form.
2,4,5,6-	$C_8H_6CI_4$	4,4-DDD	C ₁₄ H ₁₀ Cl ₄
Tetrachloroxylene alpha-BHC	CeHeCle	Endosulfan2	$C_9H_6CI_6O_3S$
gamma-BHC		Endrin aldehyde	C ₁₂ H ₈ Cl ₆ O
beta-BHC	C ₆ H ₆ Cl ₆	4,4-DDT	$C_{14}H_9CI_5$
delta-BHC	C ₆ H ₆ Cl ₆	Endosulfan sulfate	$C_9H_6CI_6O_4S$
Heptachlor	C ₁₀ H₅Cl ₇	Methoxychlor	$C_{16}H_{15}CI_3O_2$
Aldrin	C ₁₂ H ₈ Cl ₆	Endrin keton	C ₁₂ H ₈ Cl ₆ O
Heptachlor epoxide	C ₁₀ H ₅ Cl ₇ O	Decachlorobiphenyl	$C_{12}CI_{10}$
gamma-Chlordane	$C_{10}H_6CI_8$	4,4-DDE	$C_{14}H_8CI_4$
alpha-Chlordane	$C_{10}H_6CI_8$	Dieldrin	C ₁₂ H ₈ Cl ₆ O
Endosulfan1	C ₉ H ₆ Cl ₆ O ₃ S	Endrin	$C_{12}H_8CI_6O$

A classic example for GC-MS analytics are heavily chlorinated pesticides. These group of molecules cannot be ionized by LC-MS.

First results show that SICRIT[®] is capable to ionize perchlorinated compounds

SICRIT[®] is capable to ionize PCBs efficiently in positive mode

Advanced Research Analyses

SICRIT[®] enables various applications across routine and advanced research analyses

Routine Analyses

- In **routine** analyses, most frequently the focus is on **searching for certain analytes** and thus to perform a targeted high sensitivity analysis. To do so, a **Triple-Quad-MS** is mostly the preferred option.
- However, there are also some cases, where High-Resolution-MS are just to perform routine analysis. In fact, High-Resolution-MS is gaining more and more attention

Advanced Research Analyses

 In research analyses, it is often not one specific application that is to be performed with a respective MS system. The range of applications may go from targeted to completely untargeted search for analytes. Thus, not only high sensitivity but also high resolution is important, to enable a rigor identification of the respective analytes

2 GC-SICRIT-HRMS enables to individually quantify n-Alkanes and perform structural elucidation

List of measured n-Alkanes:

Substance	Sum Form.
n-octane	C ₈ H ₁₈
n-nonane	C_9H_{20}
n-decane	$C_{10}H_{22}$
n-undecane	C ₁₁ H ₂₄
n-dodecane	$C_{12}H_{26}$
n-tridecane	C ₁₃ H ₂₈
n-tetradecane	$C_{14}H_{30}$
n-pentadecane	$C_{15}H_{32}$
n-hexadecane	$C_{16}H_{34}$
n-heptadecane	C ₁₇ H ₃₆
n-octadecane	C ₁₈ H ₃₈
n-nonadecane	C ₁₉ H ₄₀
n-eicosane	$C_{20}H_{42}$

Saturated hydrocarbons (**Alkanes**) play an **important role in** environmental and food **analytics**. **Analysis** is a demanding and **still not standardized** task in analytical chemistry.

2 Compared to existing methods, it enables to identify molecular ions for n-Alkanes

Status Quo LC/GC-MS

- LC-MS is not capable to detect n-Alkanes
- **GC-MS** is **capable** to detect them. **However**, due to electronic impact ionization used in GC-MS, the molecular **ions get fragmented** and thus the interpretation of the results is difficult to almost impossible

Pentadecane*

GC-SICRIT®-HRMS

 GC-SICRIT[®]-HRMS is not only capable to detect n-Alkanes, but due to its soft ionization mechanism, it moreover delivers (quasi) molecular n-Alkane ions and little to no fragmentation. This allows the determination of the alkane chain length by molecular adduct peak for alkanes [M-3H+O]⁺

2 GC-SICRIT[®] HRMS moreover enables a sensitive and reliable quantification of n-Alkanes

Extracted ion chromatograms across n-Alkanes

Exemplary calibration curves for C16-C18

2 Compared to EI, SICRIT[®] identifies specific n-Alkanes and provides a similar analysis result

Advanced Research Analyses

2 GC-SICRIT[®]-HRMS applied to identify analytes in a completely unknown sample – non-target

Objective

- GC-SICRIT[®]-HRMS used to identify all components or rather analytes in a completely unknown sample
- Non-Target Screening carried out in cooperation with AFIN-TS GmbH and by leveraging SCIEX LC-MS Database

In cooperation with:

2 Automated identification after GC-SICRIT[®]-MS run due to LC-MS non-target database (1/3)

Identification of components by 3 different parameters:

- I. GC retention time
- 2. Mass spectrum (exact mass)
- 3. MS/MS fragment pattern

Correctly identified

Diethyltoluamid Exact mass: 191.1310 Detected as: [MH]⁺

2 Automated identification after GC-SICRIT[®]-MS run due to LC-MS non-target database (2/3)

Identification of components by 3 different parameters:

- 1. GC retention time
- 2. Mass spectrum (exact mass)
- 3. MS/MS fragment pattern

Correctly identified

Diethyltoluamid Exact mass: 191.1310 Detected as: [MH]⁺

2 Automated identification after GC-SICRIT[®]-MS run due to LC-MS non-target database (3/3)

Identification of components by 3 different parameters:

- 1. GC retention time
- 2. Mass spectrum (exact mass)
- 3. MS/MS fragment pattern

Correctly identified

Diethyltoluamid Exact mass: 191.1310 Detected as: [MH]⁺

Advantages – Ionization Range

SICRIT[®] enables to cover a broad ionization range that previously required several separate systems

Schematic illustration of different ionization techniques

Advantages – Ionization Range

SICRIT[®] enables to cover a broad ionization range that previously required several separate systems

Schematic illustration of different ionization techniques

Indicative comparison

- SICRIT[®] is capable to cover the complete ionization range of APCI without having major drawbacks in terms of sensitivity
- SICRIT[®] is capable to cover almost the whole ionization range of EI without drawbacks in terms of sensitivity. The exception are residual gases like N₂, O₂, etc. that cannot be covered with the SICRIT[®] ionization mechanism
- Up to a m/z-ratio of 2000, SICRIT[®] is also capable to cover a big chunk of the ionization range that currently can only be covered by ESI. However, large biomolecules like proteins, etc. are still only detectable by ESI

The soft ionization mechanism of SICRIT[®] is a huge advantage in terms of identification

Fragmented Spectrum of Electron Impact Ionization

- Molecular ion peak in spectrum almost not recognizable
- Allocation of different fragments to enable rigor conclusion to original molecular ion peak is challenging and time consuming

Spectrum of SICRIT[®] - Almost No Fragmentation

 Soft ionization mechanism of SICRIT[®] enables immediate recognition of molecular ion peak and delivers rigor results more quickly by avoiding complex allocation of different fragments

Advantages - Summary

SICRIT[®] is a unique bridge between the GC and the LC world and provides 5 major advantages

SICRIT[®] GC-Coupling Advantages

Combination of LC-MS detection and GC separation enables more **rigor and fast identification** of analytes

lonization mechanism allows to cover a **broader range of analytes** – previously different systems required

Soft ionization delivers **molecular ion peaks** and **avoids** complex and challenging allocation due to **fragmentation**

Soft ionization allows to apply advanced detection models like **SWATH** or **Data Dependent Acquisition** (DDA)

Combination with HRMS enables addition reliability in terms of substance identification

Thanks for your attention!

Interested in more information? Get in touch!

Plasmion GmbH Am Mittleren Moos 48 86167 Augsburg Germany + 49 821 2071 3355