


Poly-2-methyl-2-oxazoline using Acclaim C30

Column: Thermo Scientific™ Acclaim™ C30
 Dimensions: 3 µm, 3 x 150 mm
 LC System: Thermo Scientific™ Dionex™ UltiMate™ 3000
 Mobile Phases: A: Acetonitrile
 B: Water
 C: 0.1 M ammonium acetate, pH 5.2
 Gradient Times: -6.0 0.0 1.0 18.0 20.0
 A: 2 2 2 20 20
 B: 18 18 18 0 0
 C: 80 80 80 80 80
 Inverse gradient: -6.0 0.0 2.5 19.5 20.0
 A: 20 20 20 2 2
 B: 0 0 0 18 18
 C: 80 80 80 80 80
 Flow Rate: 0.50 mL/min
 Temperature: 30 °C
 Injection Volume: 1.0 µL
 Detector: Thermo Scientific™ Dionex™ Corona™ ultra Charged Aerosol Detector
 Sample: Crude polymer, est. M.W. 900; approx. 1% in water
 Peaks: 1. Toluene sulfonate
 2. Poly-2-methyl-2-oxazoline

PB20769_E 03/13S

Cationic polymerization of 2-alkyl-2-oxazoline monomers can be initiated by an alkylating agent. The resulting polymers are hydrophilic, neutral, and have reactive terminal groups. The polymers tend to have a relatively narrow molecular weight distribution. In this example, polymerization of 2-methyl-2-oxazoline was initiated with methyl p-toluenesulfonate at a 10:1 mole ratio. The Acclaim C30 column combines tolerance of highly aqueous mobile phases with strong hydrophobic retention that makes it useful for characterizing this polymer. The Corona ultra charged aerosol detector is also well suited to the task of polymer characterization. While CAD is a mass-sensitive detector, the response factor is dependent on mobile phase composition. To provide a uniform mass response, post-column makeup flow is added using an inverted, offset gradient profile.