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Introduction and Scope of Work

+ This report describes recent improvements in the gas delivery and monitoring system of a commercial drift
tube ion mobility-mass spectrometer (lon Mobility Q-TOF 6560A, Agilent Technologies).

+ With this instrument (shown below), the measured ion transport data (reduced mobilities and collision cross
sections, CCS) exhibit a precision of better than 1% RSD, with most measurements better than 0.5% RSD [1].

« The instrument supports a variety of drift gases at ca. 4 Torr, to facilitate direct comparison of empiricalresult.

« This work presents results for helium, nitrogen, and carbon dioxide drift gases. Gas-specific dependencies on
the ion mobility resolving power and other practical considerations for conducting ion mobility experiments in

alternative drift gases are discussed.
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Instrumentation and Methods
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Above Schematic — Conceptual schematic of the Agilent 6560 IM-MS Instrument.

Below Spectra — lon mobility spectra of an MS calibration mixture (Agilent ESI tuning mix) in the three drift
gases obtained under the same drift field and gas pressure conditions (9.6 V/cm, 4.000 Torr, and ca. 303 K).
Below Table — Measured reduced mobility values demonstrate the wide range of mobilities surveyed.
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Above — Significantly disparate ranges of gas-phase
mobilities are observed in the different drift gases.
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Above Left — 3D surface plot of the instrument resolving power mapped

for +1 ions.

equation developed by Siems et al. (at right) [2] and trained against
empirical measurements. This model utilizes three semi-empirical terms
(a, B, and y) to fit empirical data and theoretical results can be used to

Plot was generated using a theoretical resolving power
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infer separation performance across a range of experimental conditions.

Above Right — Extracted resolving power curves representing m/z 322, 622, and 922 ions in three different drift
gases. The different drift gases enable different reduced mobility ranges to be accessed by the instrument. In
this case, nitrogen and carbon dioxide represent lower mobilities, which access higher resolving powers.

Resolution of Isomers for Alternative Drift Gases
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Above — lon mobility spectra of a three component mixture of isomeric carbohydrates (Melezitose, Raffinose,
and Maltotriose) obtained in helium (red trace), nitrogen (blue trace), and carbon dioxide (green trace) at four
different drift fields. All spectra are unsmoothed, which results in “jagged” traces for the broader peaks due to
increased samplingacross the trace (more bins). Higher resolution is observed for nitrogen and carbon dioxide.
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Additional Considerations
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Right — Surface plot predicting higher resolving powers for multiply
charged ions (+4). The point of bisection between experimental
parameters (K, and E) indicates the optimal resolving power (ca. 90),
as observed empirically (above, highlightedin red).

Correlation of Collision Cross Section Measurements to Theory
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theory is observed for helium.

Conclusions and Future Directions

* This work demonstrates the capabilities of the instrument towards supporting studies using various drift gases.

* The instrument is capable of operating at the same pressure, temperature, and similar fields for all three drift
gases investigated (He, N,, CO,), which facilitates direct comparisons between experimental results.

« Carbon dioxide and nitrogen access the highest resolving powers. Resolving power was found to depend on
the ion’s reduced mobility, which enabled theoretical mapping of the instrument resolving power.

* Higher resolving power does correlate to better separations as observed from measurements obtained on a
mixture of three isomeric carbohydrates, but the differences in resolution are subtle.

» Heliumbased CCS measurements are found to correlate better to current theoretical methods.
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