Thermo. Titr. Application Note No. H-031

Title:	Determination of Low Levels of Sulfate by
	Barium Chromate Displacement

Scope:	Determination of low levels of sulfate (to approximately
	20mg/L SO ₄ ²⁻) by thermometric titration.

Principle:	Sulfate is precipitated by reaction with an acidified barium chromate is precipitated by basification with ammonia solution.
	Residual soluble chromate equivalent to the sulfate content of the sample is titrated with a solution of standard ferrous ion to a thermometrically-determined endpoint.
	Stoichiometric basis of determination: $[BaCrO_4 + SO_4^{2-} \leftrightarrow CrO_4^{2-} + BaSO_4 \downarrow] \times 2$
	$2CrO_4^{2-} + 2H^+ \leftrightarrow Cr_2O_7^{2-} + H_2O$
	$Cr_2O_7^{2-} + 14H^+ + 6e \leftrightarrow 2Cr^{3+} + 7H_2O$
	$[Fe^{2+} \leftrightarrow Fe^{3+} + e] \times 6$
	BaCrO ₄ + SO ₄ ²⁻ + 8H ⁺ + 3Fe ²⁺ \leftrightarrow BaSO ₄ + 3Fe ³⁺ + Cr ³⁺ + 4H ₂ O
	Thus: 3mole Fe ₂₊ ≡1 mole SO ₄ ² -
	Reference:
	Margaret D. Foster. Volumetric determination of sulfate in water: the barium chromate method. <i>Ind. Eng. Chem. Anal. Ed</i> ; 8 (3) 1936, 195-6

Reagents:	0.1 mol/L ammonium iron(II) sulfate solution, prepared by dissolution in DI water acidified 1:10 with 10% w/v sulfuric acid solution
	7.5 g/L barium chromate (re-precipitated) in 0.25mol/L HCl
	10% w/v sulfuric acid solution
	1 mol/L hydrochloric acid
	concentrated ammonia solution
	sulfate test solution: 0.0796g of anhydrous sodium sulfate was dissolved in and made to 500mL with DI water in a volumetric flask. This is equivalent to 107.7mg/L SO ₄ ²⁻ .

1

Method:	Basic Experimental Parameters:	
	Titrant delivery rate (mL/min.)	2
	No. of exothermic endpoints	1
	Data smoothing factor	40
	Stirring speed (802 stirrer)	6
	Delay before start (secs.)	60
	Pipette 100mL of water containin 250mg/L SO ₄ ²⁻ into a 250mL bea magnetic spin bar. Acidify with 1 using 1 drop methyl orange indicastirrer, and add 10mL of barium of minutes.	ker containing a mol/L hydrochloric acid ator. Place on a magentio
	Precipitate the residual barium in chromate by basification with am suspension will turn a pale lemon approximately 8 drops of ammon another 5 minutes to assist in coa	monia solution.The nyellow. Add ia past this point. Stir for
	Transfer quantitatively to a 200m making to volume with DI water. I paper (Whatman 5, 6, 40, 42 or e approximately 150mL of filtrate – 50mL aliquots.	Filter through a dry filter equivalent), and collect
	Pipette a 50mL aliquot into a titra with a program that adds a pre-desulfuric acid, and allows an equilipation seconds before the titration commequilibration time is necessary be low temperature rise that may be	ose of 5mL 10% w/v bration time of 60 mences. This long ecause of the extremely

0.001K at low levels of sulfate).

been prepared.

Note: it is important to determine the method blank for each new batch of barium chromate solution that has

Example:	Analysis of soc	dium sulfate test so 107.7mg/L SO ₄ 2-	lution, nominal
Different aliquots of	Aliquot test soln.	Nominal SO ₄ ²	Analyzed SO ₄ ²⁻
sulfate test solution were	mL	conc. mg/L	conc. mg/L
taken to simulate a range of sulfate concentrations in natural waters.	25	26.9	26.5, 26.0, 26.4 φ = 26.3
	30	32.3	33.2, 31.9, 32.3 φ = 32.4
	40	43.1	42.9, 42.8, 41.0 φ = 42.2
	50	53.9	54.7, 53.0, 54.7 φ = 54.1
	100	107.7	104.8, 107.9, 107.4 φ= 106.7

Calculation:	
	mg/L SO ₄ ²⁻ = ((titre-blank)*mol/L Fe(II)*96.064*1000)/75

Determination of method blank:

Results from the above sample were used in the regression analysis. The method blank is -0.0726mL, i.e., 0.0726mL must be *added* to the titre in this instance.

The method blank is determined in setting up any thermometric titration method. However, in this case it is doubly important as:

- Barium chromate is slightly soluble under the method conditions.
- The Ba²⁺:CrO₄²⁻ stoichiometry cannot be presumed to be exact in commerciallyavailable salt.

