Using High Resolution, Accurate Mass Instruments for the Simultaneous Quantitative and Qualitative Analysis of Banned and Hazardous Compounds in Food and Environmental Analysis

Peter Abrahamsson, LC/MS Specialist

Agilent Technologies

EMEAI & Nordic Team

"Accurate and sensitive qualitative and quantitative analysis of any compound in food and environemental samples is probably one of the biggest challenges for an analytical chemist"

Trace amounts (low ppt)

Difficult matrices

"Accurate and sensitive qualitative and quantitative analysis of any compound in food and environemental samples is probably one of the biggest challenges for an analytical chemist"

Trace amounts (low ppt)

Difficult matrices

"Accurate and sensitive qualitative and quantitative analysis of any compound in food and environemental samples is probably one of the biggest challenges for an analytical chemist"

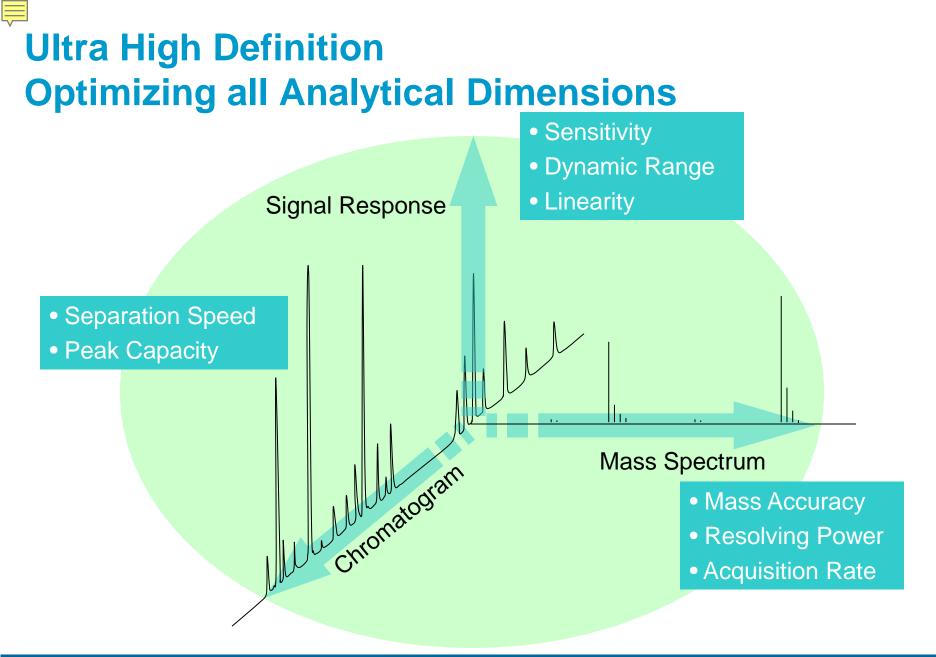
Identification/Confirmation issues

Multimethods

BACKGROUND

Triple quadrupole type of instruments dominates

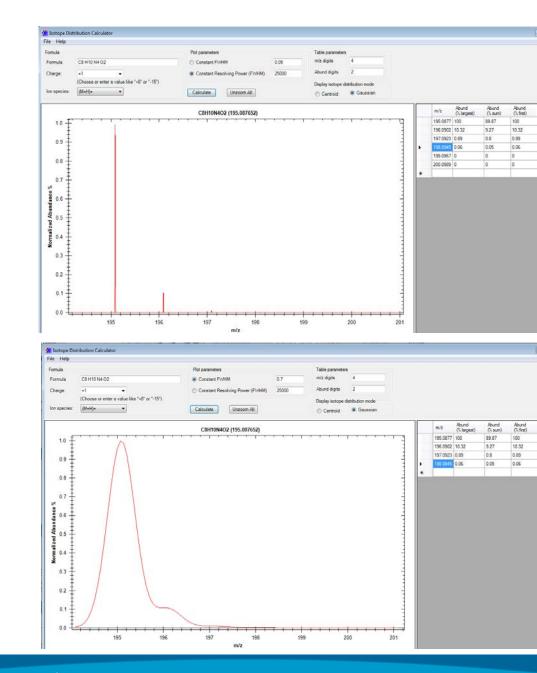
- Why QQQ?
- "MS/MS is required to get sufficient selectivity"
- "MS/MS is required to get sufficient sensitivity"
- "The only instrument type **robust** enough to work in routine
- "Minimum user dependant results"
- "Superior sensitivity"
- "Superior linearity"



BACKGROUND

...but why not high resolution instruments like TOF?

- High **resolving power** and **accurate mass** for selective and sensitive quantification
- No need to setup **MRM** transitions
- No need to decide upfront what to detect
- "All the ions all the time". Speed and sensitivity (Ferrer et.al.)
- Possibility to build accurate mass MS/MS libraries
- Modern Tof/Q-Tof's are easy to operate
- Modern Tof/Q-Tof's are stable and reliable


e.g. Caffeine, C8H10N4O2

Tof/Q-Tof:

Resolution: 25.000

Quadrupole:

Resolution: 280

Mass accuracy: e.g. Caffeine

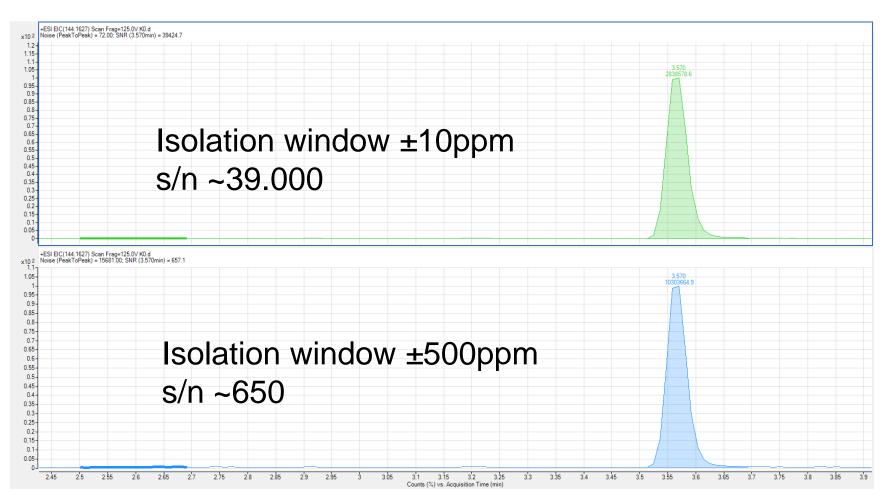
Tof/Q-Tof: 195.0877**±1ppm** 195.0875 - 195.0879m/z

Quadrupole: 195.1±0.1Da 195.0 - 195.2m/z or ~ **±500ppm**

Mass accuracy: e.g. Caffeine

Number of hits searching the METLIN DB.....~45.000 cpd´s

Tof/Q-Tof: 195.0877**±1ppm** 195.0875 - 195.0879m/z


1 (one)

Quadrupole: 195.1±0.1Da 195.0 - 195.2m/z or ~ **±500ppm**

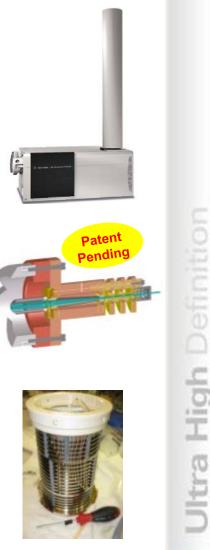
24 (twenty four)

Effect of resolution and mass accuracy EIC of m/z 144.1627

Statement 1 and 2:

- "MS/MS is required to get sufficient selectivity"
- "MS/MS is required to get sufficient sensitivity"

Statement 1 and 2:


- "MS/MS is required to get sufficient selectivity"
- "MS/MS is required to get sufficient sensitivity"

• Low resolving power instruments e.g. Quadrupole based, requires MS/MS to achieve sufficient selectivity and sensitivity

6540 UHD Accurate Mass Q-TOF LC/MS

The Highest Performing Benchtop Q-TOF

Spec

S

Exceptional Ultra High Definition Performance... With No Trade-Offs

- 40,000 resolution
- Excellent isotopic fidelity
- Mass accuracy < 1 ppm
- 5 orders of linear dynamic range
- Femtogram-level sensitivity with Agilent Jet Stream
- Fast acquisition for UHPLC up to 20 spectra/second

Made Possible by Continuing Technology Breakthroughs

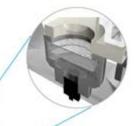
- Ion Beam Compression (IBC) cools & focuses ion beam
- Extended Flight Tube with Enhanced Mirror Technology (EMT)
- New Photonis Fast Bipolar Detector

The Ultimate Qualitative Analysis System

- Proteomics/Metabolomics
- Non-targeted food/environmental screening
- Impurity analysis
- Metabolite ID

Technology Innovation

Dual-stage ion mirror (resolution)

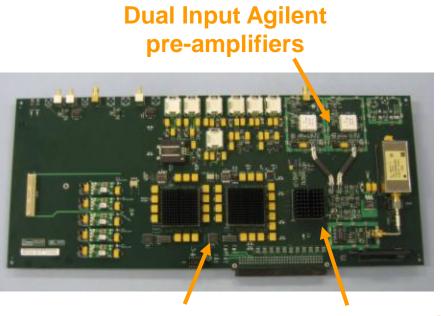


Ion Beam Compression Technology (resolution + mass accuracy)

INVAR flight tube (mass accuracy)

ADC (dynamic range)

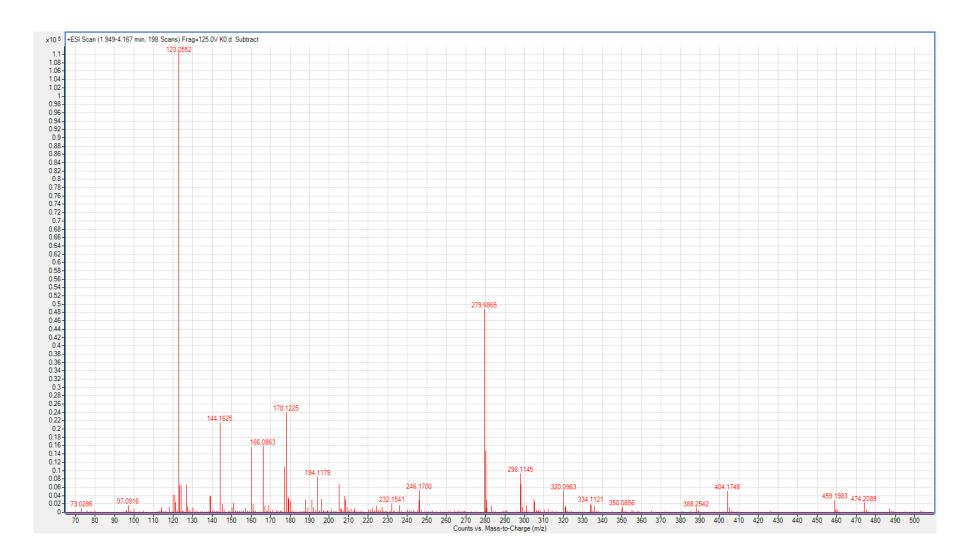
4 GHz electronics (resolution, mass accuracy, sensitivity, dynamic range)


Ion acceleration in hexapole collision cell (faster MS/MS spectra)

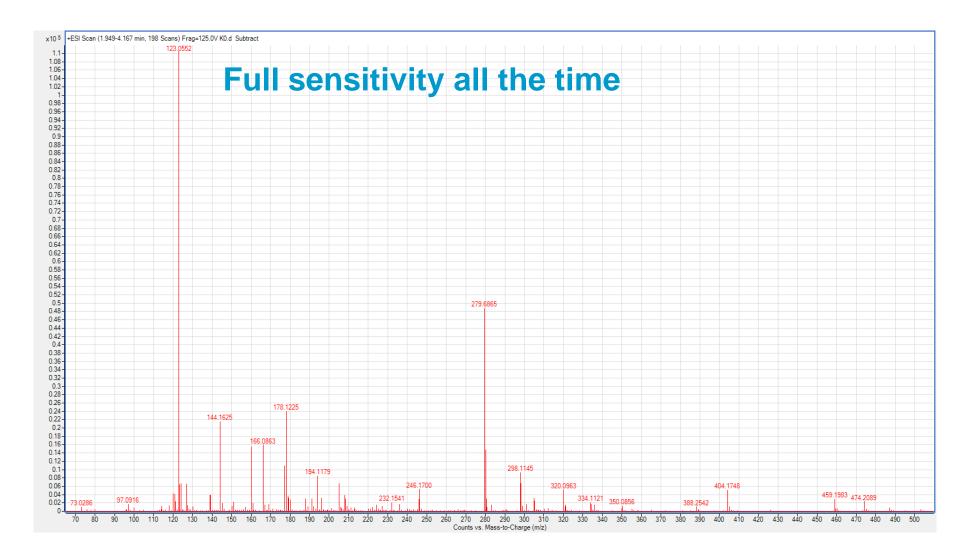
Ultra High Speed Acquisition

From Agilent's Leadership in GHz Speed Electronics

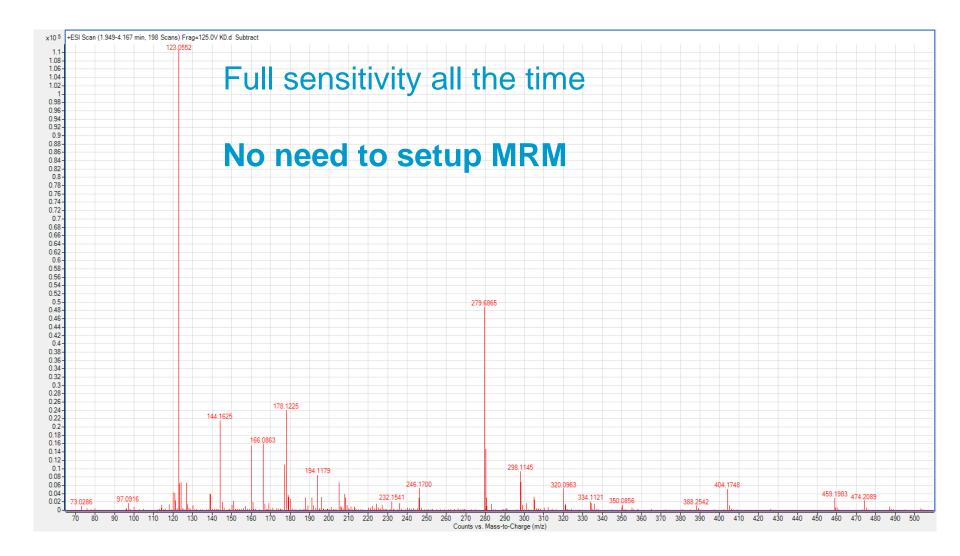
- 4 GHz Acquisition for Maximum Resolving Power and <1ppm Mass Accuracy
- 5 Decades of in-Spectrum Dynamic Range from 2-Channel x 2 GHz Dual Gain Mode
- 4 GHz (8 bit) Analog-Digital-Converter Adapted from Agilent's High Speed Oscilloscope Systems
- Ultra High Speed FPGAs process and store transients in real time

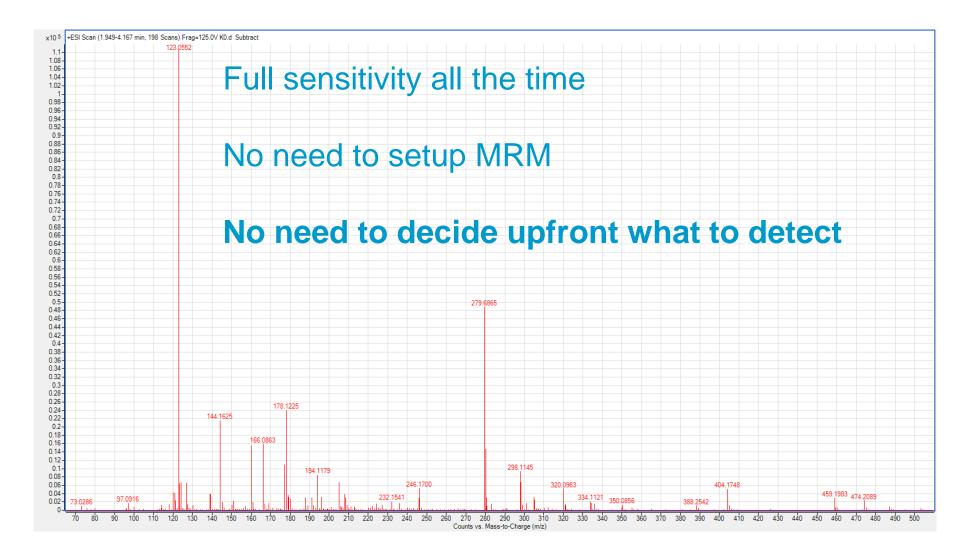


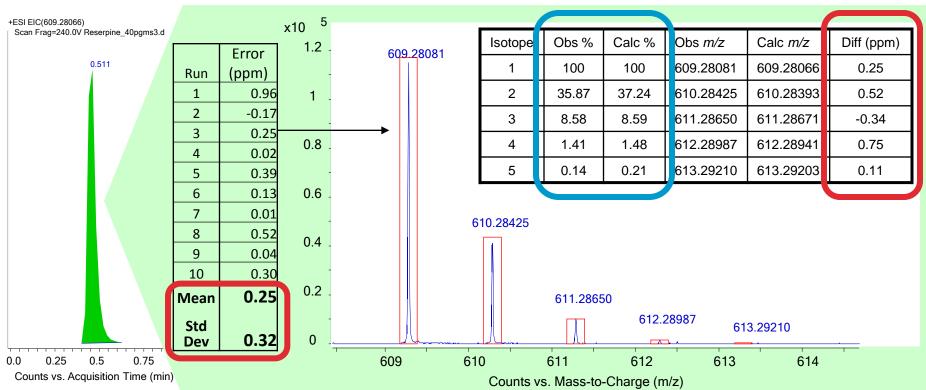
FPGAs


4 GHz Agilent ADC

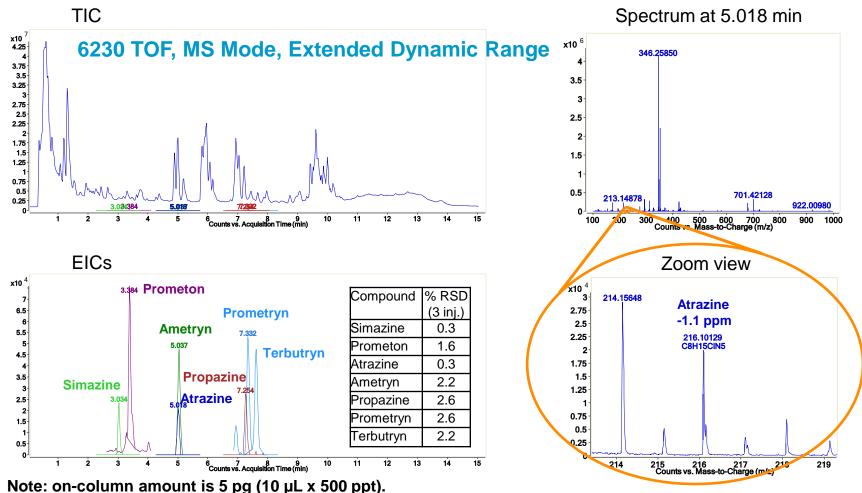
Making Research Grade Performance possible in a Benchtop Format







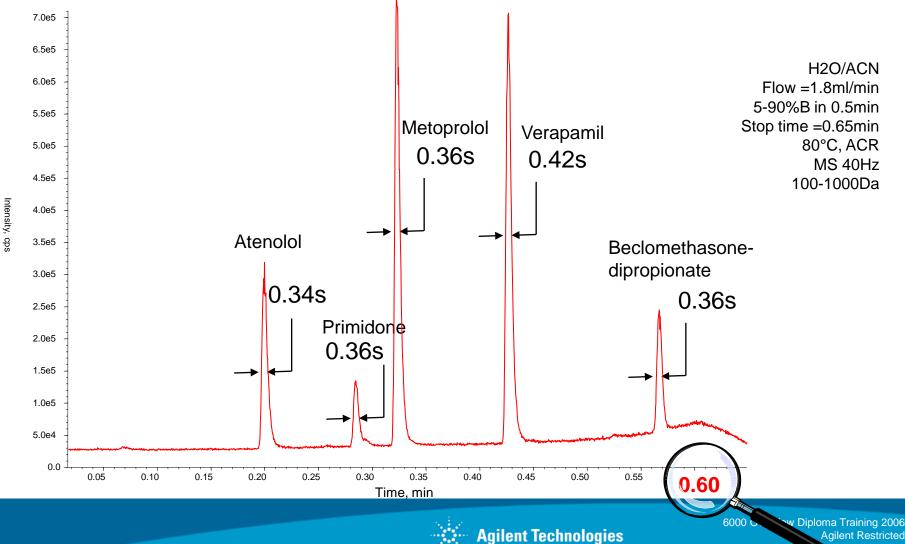
6540 Ultra High Definition Q-TOF Mass Accuracy – Repetitive Injections



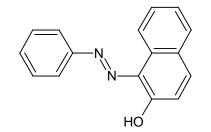
40 pg reserpine on-column, 10 injections

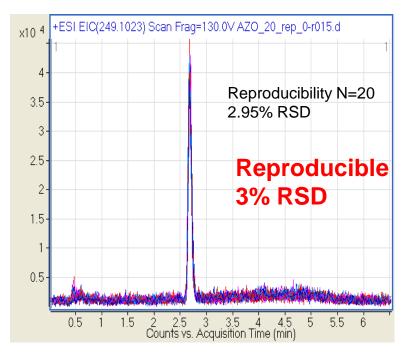
250 ppb mass accuracy calibration and very accurate isotopic ratios

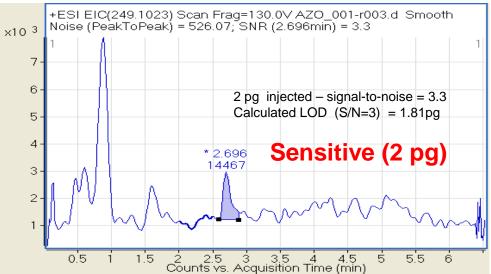
Food Safety Screening for Triazines in Tomato Matrix

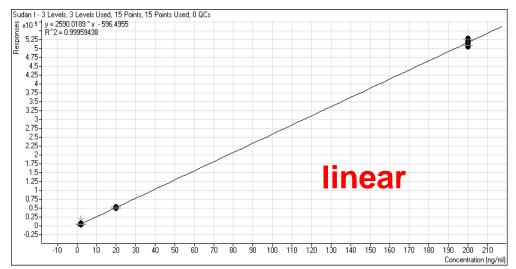


Identification done by database searching

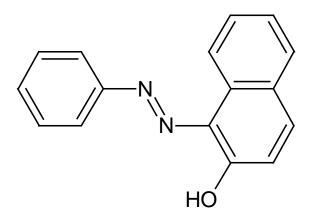

Rapid Analysis of Pharmaceutical Compounds


TOF - MS with 40 Hz acquisition rate over 39-second run time




Analysis of Sudan I: Reproducibility, Sensitivity, Quantitation +ESI EIC(249.1023) Scan Frag=130.0V AZO_001-r003.d Smooth Noise (PeakToPeak) = 526.07; SNB (2.696min) = 3.3

• Sudan I - 249.1023 m/z



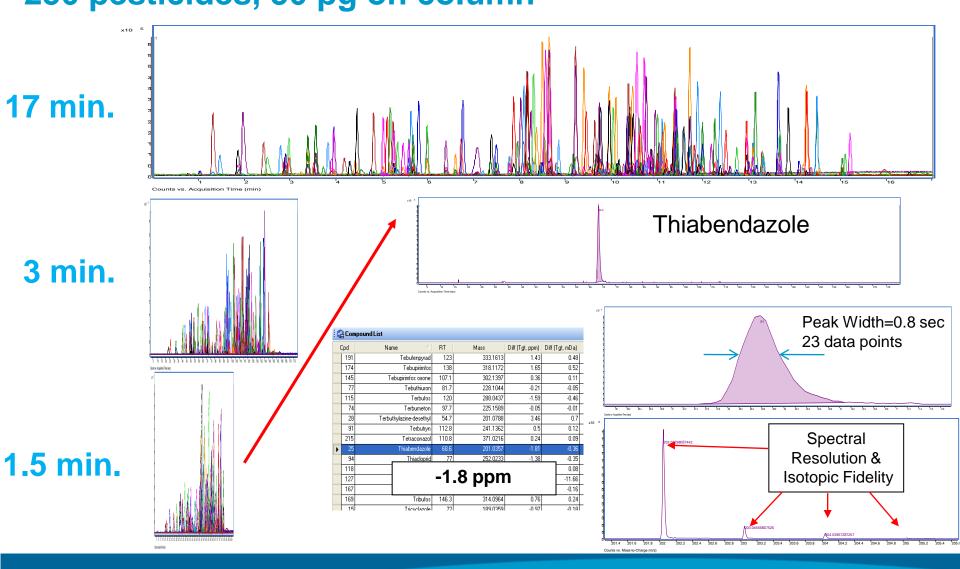
Analysis of Sudan I: Mass Accuracy, Resolution

Sudan I - 249.1023 m/z

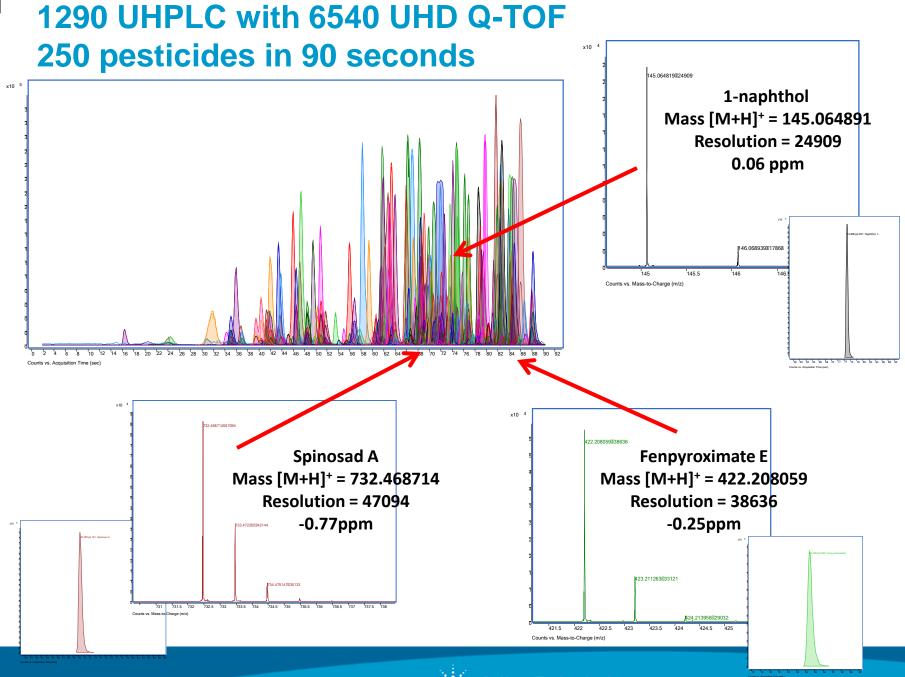
¦≤∦I	MS Formula Results: + Scan (2.698 min) - AZO_003-r004.d											
		m/z △	lon	Formula	Abundance		_	_				
		249.1022	(M+H)+	C16 H13 N2 O	101311.2			Mass	accu	racy	0.29	opm
		Best	Formula (M)	Ion Formula	Score V	Cross Score	Calc m/z	Diff (ppm)	Abs Diff (ppm)	Mass Match	Abund Match	Spacing Match
H	•		C16 H12 N2 O	C16 H13 N2 O	99.42		249.1022	0.29	0.29	99.86	98.96	99.12

Sudan Dyes: Outstanding Mass Accuracy and Resolution Enable Quantitation

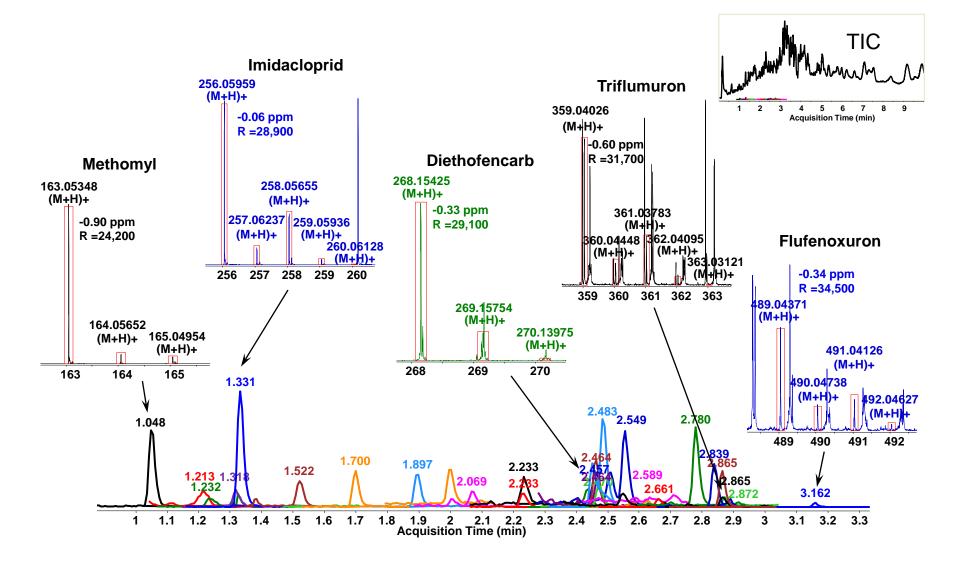
Name	m/z	Mass error (ppm)	Resolution	Signal/ noise (2 pg)	Calc. LOD at 3x RMS noise (pg)
Dimethyl (Butter) Yellow	226.1339	-0.11	28884	43.5	0.14
Sudan I	249.1023	0.29	29851	3.3	1.8
Sudan II	277.1336	-0.59	31267	6.9	0.87
Para Red	294.0873	0.64	31413	13.5 (20 pg)	4.4
Sudan III	353.1397	-0.34	32653	3.9	3.0
Sudan Red 7B	380.1870	0.31	32526	11.3	0.50
Sudan IV	381.1710	0.32	33515	8.9 (20 pg)	6.7
Sudan Red B	381.1710	0.56	34131	18.7	3.2
Rhodamine B	443.2330	-0.14	35607	58.4	0.10
Average: Standard deviation:	0.37 ppm 0.19 ppm		2.3		


Vitamin B Analysis in Food

By courtesy to Q&Q Laboratories, Sweden


R Wahlström, E. Hermansson, G. Hägglund

TOF Pesticide Screening 250 pesticides, 50 pg on column



Agilent Technologies

Identification of 29 Pesticides in Pepper Matrix at 10 ppb

Successful Identification of Isobaric Co-eluting Species by 1290/ 6540 UHD QTOF System

Formula	m/z		Compound	ppm difference	Identify by
C9H7N3S	190.0433	1a	tricyclazole		
C9H16CIN5	190.0667	1b	propazine F1 Cl-37	123	RT difference
C14H21NO4	226.1074	2 a	diethofencarb F1		
C14H15N3	226.1339	2b	cyprodinil	117	MS difference
C15H18CIN3O	294.1181	3a	cyproconazole Cl-37		
C15H20CIN3O	294.1368	3b	paclobutrazol	63	MS difference
C13H11Cl2F4N3O	372.0288	4a	tetraconazole		
C21H13N3O4	372.0979	4b	Azoxystrobin-F1	186	MS difference
					\backslash

Complex sample challenge:

Insufficient chromatographic or mass spectrometry resolution for these isobaric coeluting species (ICS)

Page 32

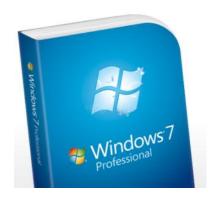
SUMMARY

Modern Tof and Q-Tof instruments offers...

- High resolving power and accurate mass for selective and sensitive quantification
- No need to setup **MRM** transitions
- No need to decide upfront what to detect
- Excellent linearity over 3-3.5 orders of magnituide
- Possibility to build accurate mass MS/MS libraries
- Modern Tof/Q-Tof's are easy to operate
- Modern Tof/Q-Tof's are stable and reliable
- Still sensitivity gap to QQQ systems (10-20 times)

MassHunter Software

MassHunter Workstation


Future proof with support of Windows 7 (64-bit)

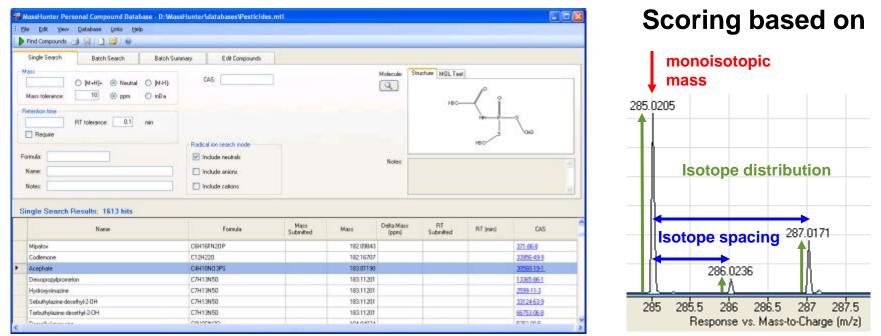
- New and updated components (Feb-2011)
 - MassHunter Acquisition for QQQ B.04.01
 - MassHunter Acquisition for TOF/Q-TOF B.04.00
 - MassHunter Qualitative Analysis B.04.00
 - MassHunter BioConfirm B.04.00
 - MassHunter PCDL Manager B.04.00
 - MassHunter Forensics/Tox PCD B.04.00
 - MassHunter Forensics/Tox PCDL B.04.00 (Broecker, Herre & Pragst)
 - MassHunter METLIN AMRT PCD B.04.00 NEW
 - MassHunter METLIN PCDL B.04.00 NEW
 - MassHunter Pesticide PCD B.04.00

• All run on Win 7 64-bit (in 32-bit mode), supports Excel 2010

- Future proof your analytical instrument software NOW
- Prepare for future native 64-bit versions of MassHunter Qual and Quant

MassHunter Workstation

Future proof with support of Windows 7 (64-bit)


- New and updated components (Feb-2011)
 - MassHunter Acquisition for QQQ B.04.01
 - MassHunter Acquisition for TOF/Q-TOF B.04.00
 - MassHunter Qualitative Analysis B.04.00
 - MassHunter BioConfirm B.04.00
 - MassHunter PCDL Manager B.04.00
 - MassHunter Forensics/Tox PCD B.04.00
 - MassHunter Forensics/Tox PCDL B.04.00 (Broecker, Herre & Pragst)
 - MassHunter METLIN AMRT PCD B.04.00 NEW
 - MassHunter METLIN PCDL B.04.00 NEW
 - MassHunter Pesticide PCD B.04.00
- All run on Win 7 64-bit (in 32-bit mode), supports Excel 2010
 - Future proof your analytical instrument software NOW
 - Prepare for future native 64-bit versions of MassHunter Qual and Quant

Agilent Personal Compound Database

Food Safety Screening, Metabolomics, Forensics

Accurate mass and optional RT databases (AMRT)

- Endogenous metabolite database (METLIN) ~45.000 compounds including lipids
- Pesticide database (1600 pesticides)
- Forensic, toxicology, pharmaceutical database (7000 compounds)
- Create your own compound database

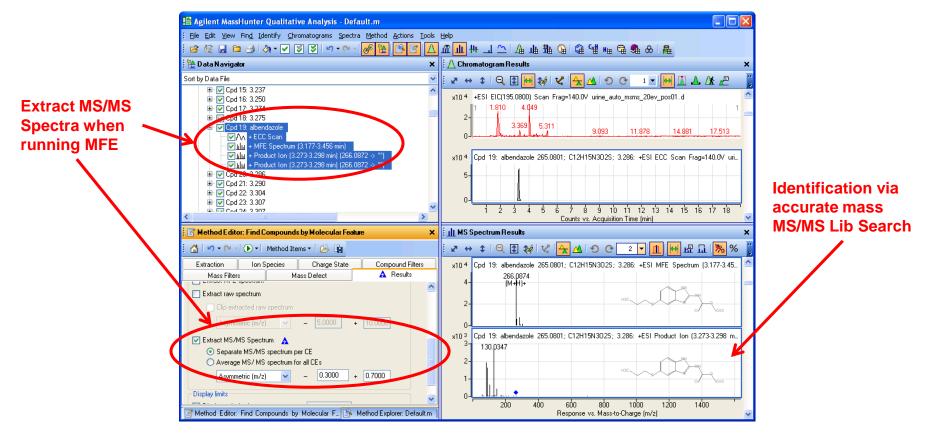
Public Metlin: www.metlin.scripps.edu

MassHunter PCDL Manager B.04.00 Create/edit customized local PCDs and PCDLs

Find Compounds 🆪 📕 🗋 💕 🥝	<u>H</u> elp								
Single Search Batch Search	Batch Summa	ary	Edit Compou	unds	Spectral Sear	ch Browse Spectra	Edit Spectra		
lass						Molecule:	Structure MOL Text		
[M+H]+ Neutral	[M-H]-	Formula	:			Q	<u>o</u>		
Mass tolerance: 10.0 ppm mD	a	Name	e 🗌				ОНЗ		
		Notes	c						
Retention time		IUPAC							
Require		IUPAG					нзсN		
RT tolerance: 0.1 min		CAS						/	
on search mode		CAS							
Include neutrals		ChemSpider					0#		
						Notes:	LocalAnesthetic		
Include anions							Local restricte		
Compound Name	Formula	Mass	RT (min)	CAS	ChemSpider		IUPAC Name	Spectra #	
	Formula C18H20D	Mass 320.18154		CAS	ChemSpider		IUPAC Name	Spectra #	
Compound Name 🔺				CAS	ChemSpider	Ethyl (1R.2R.35,55)-3-(benzoylox	IUPAC Name		
Compound Name A Cocaethylen-D3	C18H20D	320.18154				Ethyl (1R.2R.3S.5S)-3-(benzoylox		3	
Compound Name A Cocaethylen-D3 Cocaethylene	C18H20D C18H23N	320.18154 317.16271						3	
Compound Name A Cocaethylen-D3 Cocaethylene Cocain-D3	C18H20D C18H23N C17H18D	320.18154 317.16271 306.16589		<u>529-38-4</u>	559082		y)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate	3 3 3 3	
Compound Name A Cocaethylen-D3 Cocaethylene Cocain-D3 Cocaine	C18H20D C18H23N C17H18D C17H21N	320.18154 317.16271 306.16589 303.14706		<u>529-38-4</u>	559082	Methyl (1R,2R,3S,5S)-3-(benzoylo	y)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate	3 3 3 3 3	
Compound Name A Cocaethylen-D3 Cocaethylene Cocain-D3 Cocaine Cocaine Cocain-D3	C18H20D C18H23N C17H18D C17H21N C18H18D	320.18154 317.16271 306.16589 303.14706 302.17097		529-38-4 50-36-2	<u>559082</u> <u>10194104</u>	Methyl (1R,2R,3S,5S)-3-(benzoylo	y)-9-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate xy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate	3 3 3 3 3 3 3	
Compound Name Cocaethylen-D3 Cocaethylene Cocain-D3 Cocaine Codein-D3 Codeine	C18H20D C18H23N C17H18D C17H21N C18H18D C18H21N	320.18154 317.16271 306.16589 303.14706 302.17097 299.15214		529-38-4 50-36-2 76-57-3	<u>559082</u> <u>10194104</u>	Methyl (1R.2R,3S,5S)-3-(benzoylo (5alpha,6alpha)-3-Methoxy-17-met	y)-9-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate xy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate	3 3 3 3 3 3 3 6	
Compound Name A Cocaethylene O Cocain-D3 Cocaine Cocaine Codeine D3 Codeine Codeine Codeine Gucuronide	C18H20D C18H23N C17H18D C17H18D C17H21N C18H18D C18H21N C24H29N	320.18154 317.16271 306.16589 303.14706 302.17097 299.15214 475.18423		529-38-4 50-36-2 50-36-2 76-57-3 20736-11-2	559082 10194104 4447447	Methyl (1R.2R,3S,5S)-3-(benzoylo (5alpha,6alpha)-3-Methoxy-17-met	y)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate xxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate hyl-7,8-didehydro-4,5-epoxymorphinan-6-ol	3 3 3 3 3 3 3 6	
Compound Name Cocaethylen-D3 Cocaethylene Cocain-D3 Cocaine Codeine Codeine Codeine Codeine Codeine	C18H20D C18H23N C17H18D C17H18D C17H21N C18H18D C18H21N C24H29N C20H24N	320.18154 317.16271 306.16589 303.14706 302.17097 299.15214 475.18423 372.16852		529-38-4 50-36-2 76-57-3 20736-11-2 7125-76-0	559082 559082 10194104 4447447 7844721	Methyl (1R,2R,3S,5S)-3-(benzoylo (Salpha, Galpha)-3-Methoxy-17-met (([(Salpha,6E)-3-Methoxy-17-meth	y)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate xxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate hyl-7,8-didehydro-4,5-epoxymorphinan-6-ol	3 3 3 3 3 3 6 6 4 0	
Cocaethylen-D3 Cocaethylene Cocain-D3 Cocaine Codeine Codeine Codeine glucuronide Codeine Codeine glucuronide Codeine glucuronide Codeine glucuronide	C18H20D C18H20N C17H18D C17H18D C17H21N C18H18D C18H21N C2H29N C20H24N C21H36N	320.18154 317.16271 306.16589 303.14706 302.17097 299.15214 475.18423 372.16852 767.11521		529-38-4 50-36-2 76-57-3 20736-11-2 7125-76-0 85-61-0	559082 559082 10194104 4447447 7844721 6557	Methyl (1R.2R.35.55)-3-benzoylo (Salpha, Galpha)-3-Methoxy-17-met ((((Salpha, GE)-3-Methoxy-17-meth (2-Oxo-2.3-dihydro-1H-indole-3.3<	y) 9 methyl-8-azabicyclo[3.2.1]octane-2-carboxylate xy)-8 methyl-8-azabicyclo[3.2.1]octane-2-carboxylate hyl-7.8 didehydro-4,5-epoxymorphinan-6-ol // 4.5-epoxymorphinan-6-yildene]amino]oxy]acetic acid	3 3 3 3 3 3 6 6 6 1 0 0 1 0 1 0 2 0	

SUPPORTS:

METLIN AMRT PCD B.04.00 METLIN AMRT PCDL B.04.00 For/Tox AM PCD B.04.00 For/Tox AM PCDL B.04.00 Pesticide AM PCD B.04.00


=> The most comprehensive offering of content PCDs and PCDLs

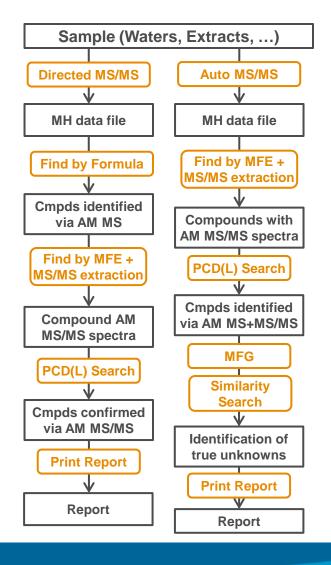
- Personal Compound Database and Libraries (PCDLs) for accurate mass database and MS/MS library search with optional retention time
- Add compounds, AM MS info, RT info and AM MS/MS spectra at multiple collision energies using the new PCDL Manager software
- Use create and edit PCDs and PCDLs on your **personal** PC (keep proprietary data in house!)

Forensics/Tox Accurate Mass PCDL

"Broecker, Herre & Pragst" – MS/MS spectra for 2600 Cmpds

- The Forensics/Tox accurate mass PCD contains 7500 compounds
- New Forensics/Tox accurate mass PCDL contains 7900 MS/MS spectra for over 2600 compounds from 3 collision energies mostly in positive mode.
- The first commercially available accurate mass MS/MS library!

New METLIN AMRT PCD and PCDL B.04.00 *MS/MS spectra for > 2300 endogenous metabolites !*


	Find Spectra 🏼 🔒 📕	🗋 🞽 🥝														
	Single Search	Batch Search	Ba	tch Summa	y	Edit Compou	nds	Spectral Searc	h	Browse Spec	tra	Edit Spectr	a			
q	uired spectra								Graphic	S Mass Lists						
	Compound Name	Precursor Ion	Collision Energy	lon Polarity			nstrument ype		Abundance	d spectrum 0 8 6 4 2						
ß	ary spectra Compound	Precursor	Collision	lon			nstrument	Add	Library s	0-120 30 m/z	40 50	60 70	80 90	100 11	0 120 13	80 140 150
	Name	lon 133.06081	Energy	Polarity 0 Positive	ES		ype TOF	Spectr	ື ຊຶ 10	0-		74.02,	100.00			
	Asparagine Asparagine	133.06081		0 Positive	ES		TOF	Delete Spectr		10-			87.06, 59	135		
	Asparagine	133.06081		0 Positive	ES		TOF		A	i0-						
	Asparagine	131.04620		0 Negativ			TOF	Update Spectr		20-	46.03, 13.6	52			133.0	16, 24.77
	Asparagine	131.04620		20 Negativ			TOF	_		0- 20 30	40 50	60 70	<u> </u> 80 90		0 120 13	140 150
	Asparagine	131.04620		0 Negativ		i G	TOF			20 30 m/z	40 30	6U 7U	80 90	100 1	0 120 13	140 150
•	gle Search Resu Compou	Its: 23187 hi		Formula	Mass	RT (min)	CAS	ChemSpider	METLIN	HMP	KEGG	LMP		IUPAC Na	me	Spectra
	Niacin (Nicotinic acid)		CE	H5N02	123.03203	3 0.646	<u>59-67-6</u>		<u>240</u>		<u>C00253</u>					6
	Hydroxyroline		CS	H9NO3	131.05824	0.349	<u>51-35-4</u>		<u>257</u>							6
	Asparagine			H8N2O3	132.05349		<u>70-47-3</u>		<u>14</u>		<u>C00152</u>					6
	Aspartic Acid		C4	H7N04	133.03751		<u>56-84-8</u>		<u>15</u>		<u>C00049</u>					6
	•															
	Aspartic Acid Glutamine Glutamic Acid			H10N2	146.06914		<u>56-85-9</u> 56-86-0		<u>18</u> 19		C00064 C00025					6

- Now contains ~ 45.000 endogenous metabolites
- New METLIN AMRT PCD added retention times for 700 compounds on a RP column. Additional RTs on a hydrophilic column in progress.
- New METLIN AMRT PCDL contains MS/MS spectra from over 4.600 compounds from up to 4 collision energies in positive and/or negative mode (~ 27.000 spectra total)

MassHunter Workstation B.04.00 for TOF/Q-TOF

Confident Screening + ID in Food and Environment

Targeted Workflow

- Highest productivity via automatic Finding, identifying and confirming targeted compounds via Find by Formula using accurate mass MS info
- Easily create a Personal Compound Database and Library (PCDL) from targeted compounds via new PCDL Manager
- Confirm identity via accurate mass MS/MS spectra library search in a PCDL via *new* Directed MS/MS in the first run!

Untargeted Workflow

- Highest productivity via automatic extraction of accurate mass MS and MS/MS info via *new* Find by MFE with MS/MS spectral extraction from Auto MS/MS data files.
- Automatically conduct a PCDL search and Molecular Formula Generation using MS and (!) MS/MS information
- Highest confidence via *new* combined scoring and viewing of results from AM DB search, AM library search and MFG.

New 6550 iFunnel QTOF 10X Sensitivity Gain Enables Applications

Sensitivity

- Dramatically improved quantitative capabilities
- New Qual/Quan Workflows
- Non-targeted compound screening

Comprehensive Performance Enhancements

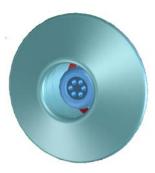
- Mass Resolution >40,000
- 50 spectra /sec MS and 33 spectra/sec MS/MS
- 5 orders of linear dynamic range
- <1 ppm MS mass accuracy; <2 ppm MS/MS
- Unrivalled sensitivity

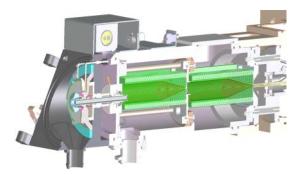
6550 iFunnel Q-TOF LC/MS System

iFunnel Technology Captures 6x More Ions

Agilent Jet Stream

- Thermal confinement of ESI plume
- Efficient desolvation to create gas phase ions
- Creates an ion rich zone


Hexabore Capillary


- Samples 6 times more ion rich gas from the source with 6 capillaries
- Captures the majority of the gas from the source region

Dual Ion Funnel

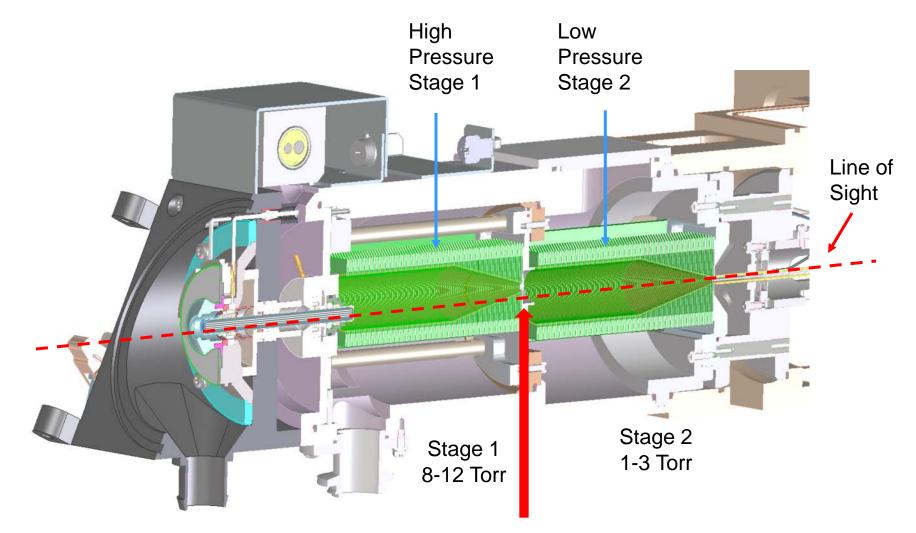
- Removes the gas but captures the ions
- Removes neutral noise
- Extends turbo pump life

Agilent Jet Stream

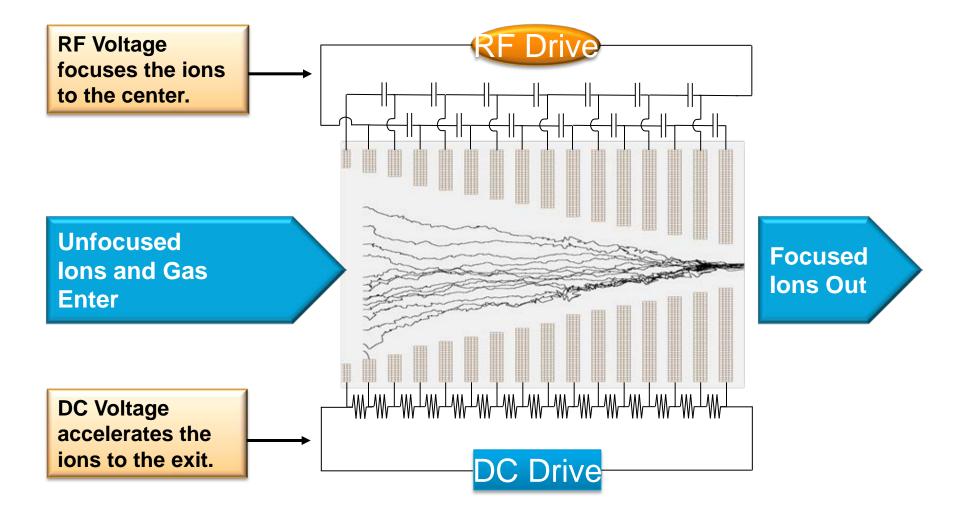
Thermal Gradient Focusing Technology

Dramatic **Sensitivity Gains** for Premium TOF, Q-TOF, and Triple Quad

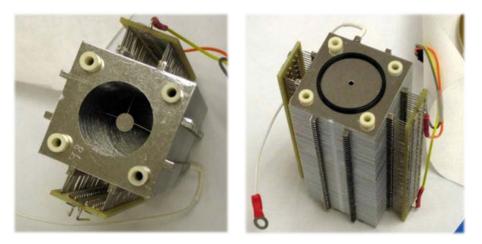
Ions Focused in a Collimated Thermal Confinement Zone

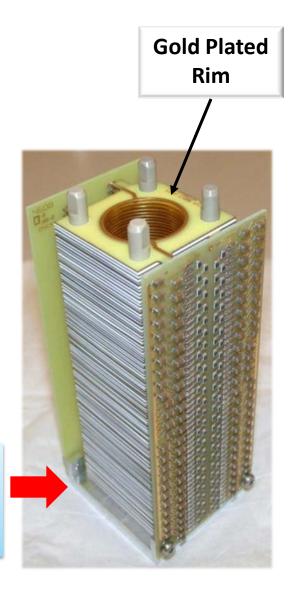

Improved Ionization Efficiency and Sampling

Effective Across a Broad Range of Analyte Classes, including many APCI compounds


Two Stage Ion Funnel Manages the Gas Load

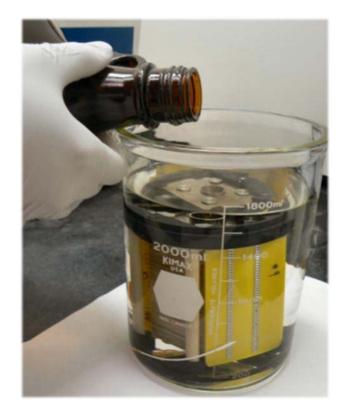
Offset ion funnels to prevent neutrals from going straight through to MS


Ion Funnel Operation



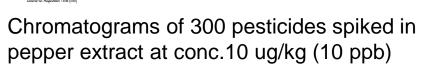
Ion Funnel Construction

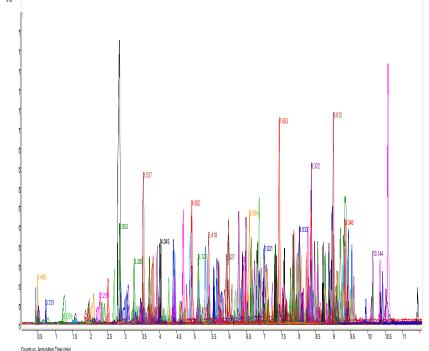
Previously, many metal plates made cleaning a priority because of the large, active surface area... The high capacitance also required larger power supplies to provide RF power


The 6490 design uses printed circuit board technology giving a greatly reduces surface area. This low capacitance enables the use of small power supplies, and enables fast polarity switching

Simple and Easy Ion Funnel Cleaning Procedure

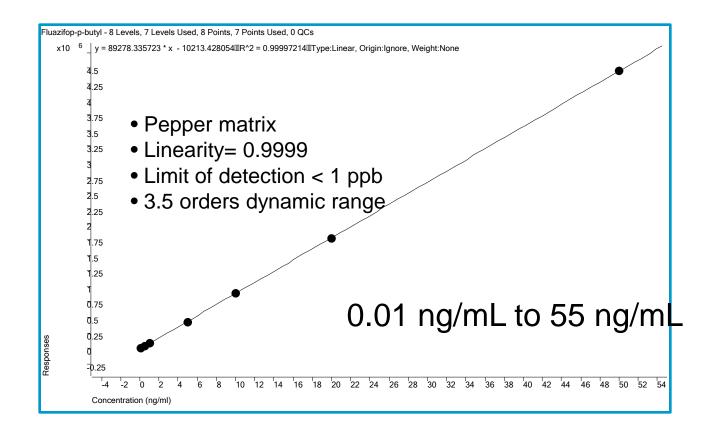
- As with all LC/MS systems routine cleaning is necessary periodically.
- The high pressure ion funnel should be cleaned periodically, although this could vary from 3 months to 1 year depending on the quantity and type of samples
- The high pressure ion funnel is easily removed
- Clean by sonicating the ion funnel assembly in 100% isopropanol for 15 minutes.



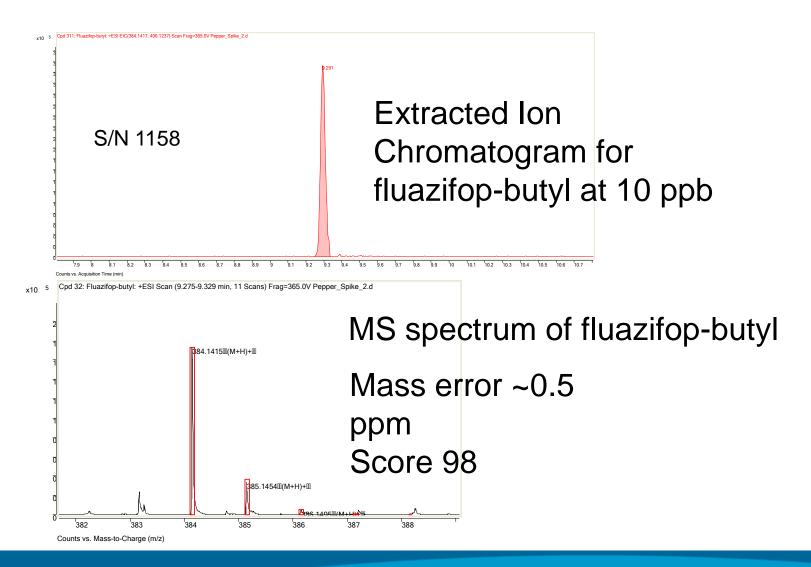


Dramatically Improving Detection Levels for Non-Targeted Screening 10 ppb Detection of Low Response Compounds

European Reference Lab for Pesticides


- 15% of tested pesticides have detection limits between 20 ppb to 100 ppb
- International actionable level is 10 ppb
- Challenge: Detect low responding compounds at <10 ppb using 6550 iFunnel QTOF

6550 Linearity and Precision for Fluazifop-butyl



Successfully Detected in Pepper at 1 ppb

Dramatic Increase in Pesticide Detection

Over 10 Fold Gain in Detection for Fluazifop-butyl

Compound Detection Below 10 ppb

	Pepper	Pepper	Orange	Orange
Compound	6530	6550	6530	6550
Chlorfluazuron				
Cymoxanil				
Diuron				
Fluazifop-butyl				
Fluroxypr				
Propaquizafop				
Quizalofop-ethyl				
Rotenone				
Bromacil				
Fenproximate				
Tribenuron				
Aldoxicarb				

85% of all pesticides successfully detected by 6530 QTOF in tomato, pepper, leek, orange matrices

THANK YOU!

