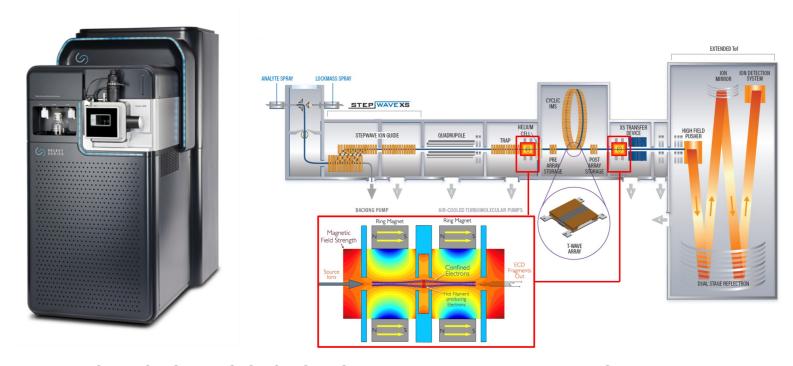
CONFIDENT O-GLYCOSYLATION SITE IDENTIFICATION USING A CYCLIC ION MOBILITY— MASS SPECTROMETER EQUIPPED WITH ECD FUNCTIONALITY

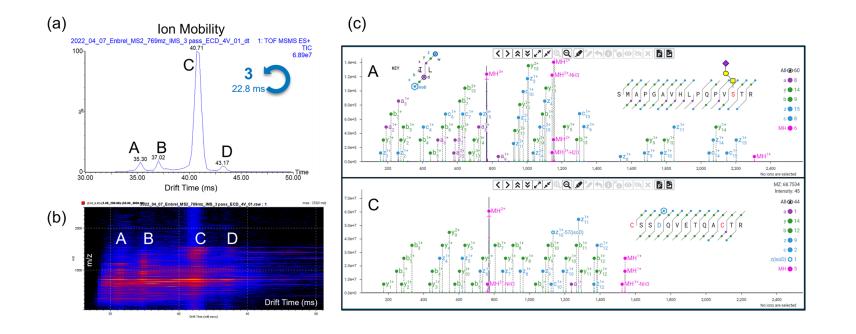

<u>Brad J. Williams</u>¹, Samantha Ippoliti¹, Dale Cooper-Shepherd², Barbara J. Sullivan¹, Ying Qing Yu¹, and James I. Langridge²

¹Waters Corporation, Milford, MA USA, ²Waters Corporation, Wilmslow, England UK

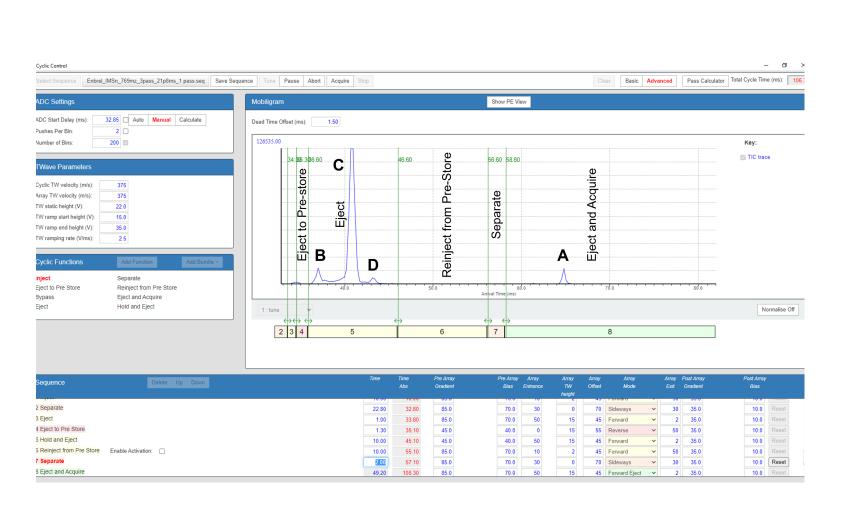
OVERVIEW

- Site specific analysis of O-glycosylation using ECD (Electron Capture Dissociation) enables the retention of the glycan moieties on the peptide backbone and allows the glycosylation site(s) to confidently assigned using the resulting fragment ions.
- In this study, we demonstrate the utility of ECD on a cyclic IMS-enabled instrument for unambiguous assignment of glycosylation site locations for O-glycopeptide species from Enbrel (etanercept).
- Explore the advantages of the ExD cell placed post-IMS on the SELECT SERIES™ Cyclic™ IMS mass spectrometer.
- Use multi-pass IMS to resolve precursor ions by ion mobility prior to ECD fragmentation.
- Isolate O-glycopeptides with IMSⁿ (slicing) followed by multi-pass IMS to determine if multiple glycoforms are present.

SELECT SERIESTM CYCLICTM IMS


Figure 1. SELECT SERIES CYCLIC IMS instrument schematic with eMSion ExD cell. Note that the ExD cell can be installed either pre- OR post-IMS.

METHODS


- Sample:
 - Infusion: 4.0 µM solution of reduced and alkylated Enbrel (etanercept) trypsin digest was used for static nanospray infusion experiments.
 - LC-MS: 2.0 µM solution of Enbrel trypsin digest was used for targeted LC-HDMS/MS ECD experiments.¹
- Mass Spectrometer: SELECT SERIES Cyclic IMS mass spectrometer equipped with post IMS ExD cell (eMSion)
 Infusion: targeted HDMS/MS ECD with multi-pass IMS and IMSⁿ (slicing) followed by
 - multi-pass IMS with ECD fragmentation LC-MS: targeted HDMS/MS ECD on Enbrel O-glycopeptides
- Inlet: ACQUITY™ I-Class UPLC™ System
 - Column: ACQUITY Premier CSH C₁₈ Column 130Å, 1.7 µm, 2.1 x 100 mm Mobile Phases: MPA 0.1% Formic Acid in Water, MPB 0.1% Formic Acid in Acetonitrile Gradient: 1.0 35.0%B over 25 minutes Column Temperature: 60°C
- **Data Processing:** ECD MS/MS data were interpreted using a semi-automated mass spectral annotation using ExDViewer BETA v4.2.7 (eMSion).

RESULTS & DISCUSSION

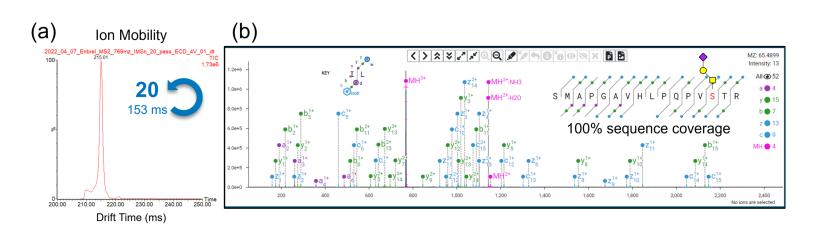

INFUSION EXPERIMENTS

Figure 2. Panel (a) ion mobility profile from a quadrupole isolated precursor ion at 769 m/z with 3 pass (22.8 ms) IMS separation prior to ECD fragmentation. A total of four precursor ions (peaks A-D) are separated with 3 pass IMS prior to ECD fragmentation. Panel (b) 2D plot of m/z vs. Drift Time (ms) for the drift aligned ECD fragment ion spectra for peaks A-D. Panel (c) corresponding ECD mass spectra for peaks A and C highlighting precursor ions of different relative abundance can resolved by ion mobility prior to ECD fragmentation. The minor component Peak A will be further analyzed by IMSⁿ separation.

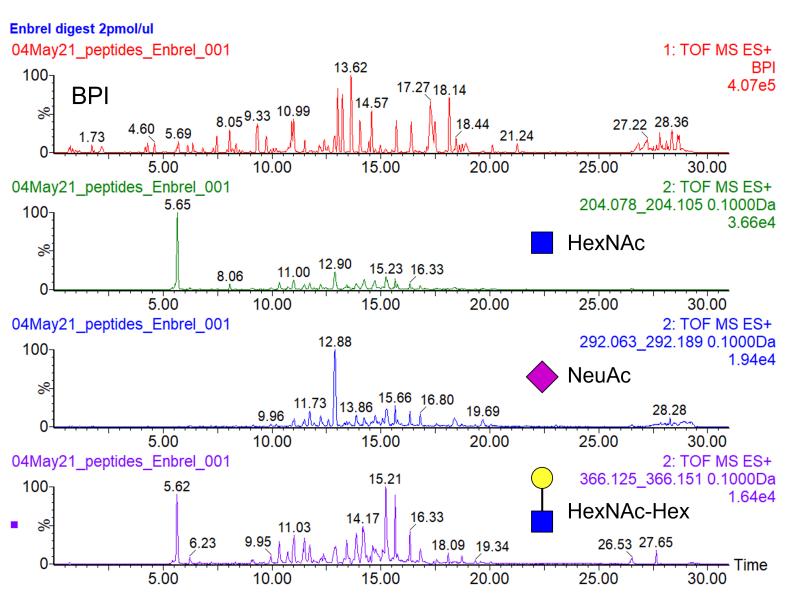


Figure 3. Cyclic Sequence for IMSⁿ slicing experiment with Peak A (768.70 m/z, 35.3 ms). The initial IMS separation is 3 passes (22.8 ms) with Peak A ejected to the pre-store array and Peaks B-D are ejected from the cyclic IMS. Peak A is re-injected into the cyclic IMS racetrack and separated with 2 ms (1 pass).

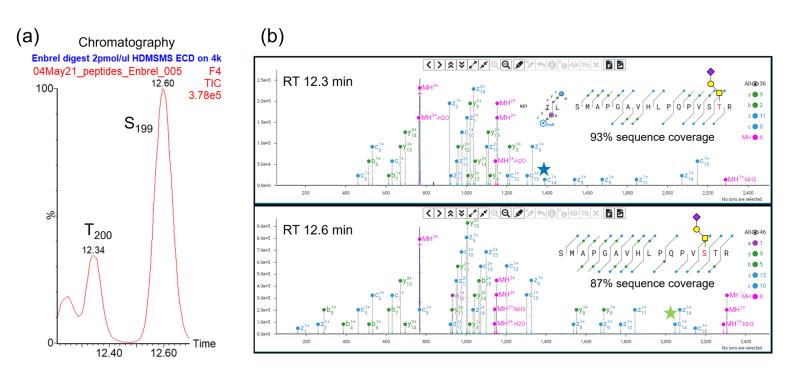


Figure 4. IMSⁿ-ECD experiment with 768.70 m/z precursor (Peak A). Panel (a) Ion mobility profile for IMSⁿ slicing experiment w/ 20 pass (153 ms) ion mobility separation prior to ECD fragmentation. Panel (b) Corresponding IMSⁿ resolved ECD fragment ion spectra of T19 peptide (SMAPGAVHLPQPVS₁₉₉TR) glycosylated with HexNAc-Hex-NeuAc at the serine 199 site. A single S₁₉₉ glycoform is observed after IMSⁿ slicing followed by 20 passes across the cyclic IMS.

LC-MS EXPERIMENTS

Figure 5. BPI chromatogram for the LC-HDMS^E (single pass IMS) analysis of the Enbrel (etanercept) tryptic digest. Extracted ion chromatograms for the characteristic oxonium ions: HexNAc (204.08 m/z), NeuAc (292.10 m/z), and HexNAc-Hex (366.14 m/z) are shown for the elevated energy function.

Figure 6. Panel (a) TIC chromatogram for LC-HDMS/MS ECD experiment for m/z 768.70 (+3) with chromatographic peaks at RT 12.3 and 12.6 min, respectively. Panel (b) corresponding ECD MS/MS spectra for the T19 tryptic peptide (SMAPGAVHLPQPVSTR) glycosylated with a single HexNAc-Hex-NeuAc at position T_{200} (12.3 min) and S_{199} (12.6 min). Note that the sequence coverage may be under-estimated since ECD does not cleave before proline residues.

RT (min)	Peptide	O- glycan(s)	Position(s)
14.7	T1: LPAQVAFT ₈ PYAPEPGS ₁₆ T ₁₇ CR		T ₈
15.3			T ₈
10.9	T19: S ₁₈₆ MAPGAVHLPQPVS ₁₉₉ T ₂₀₀ R	■ & ■	S ₁₉₉ ■ & T ₂₀₀ ■ ●
11.7		 & 	S ₁₉₉
11.9			S ₁₉₉ ••• & T ₂₀₀ ••••
12.2		■ & ■ →	S ₁₉₉ & T ₂₀₀ •••
12.3		□-0-	T ₂₀₀
12.6			S ₁₉₉
12.8		••• & •••	S ₁₉₉ ••• & _{T200} •••
18.3	18.3 T22-23: 19.6 T ₂₄₃ HT ₂₄₅ CPPCPAPELLGGPS ₂₅₉ VFLFPPKPK	■ • •	T ₂₄₅
19.6			T ₂₄₅

Table 1. List of ENBREL (etanercept) O-glycopeptides and glycosylation sites identified by targeted ECD.

CONCLUSIONS

- The utility of electron capture dissociation on the SELECT SERIES Cyclic IMS was investigated for the sequencing of peptides with labile post-translational modifications, namely O-glycans.
- The infusion IMS-ECD experiments with quadrupole selected precursor ions highlight the ability of multi-pass IMS to resolve multiple precursor ions before ECD fragmentation.
- IMSⁿ (slicing) combined with multi-pass IMS enables gas-phase isolation based on ion mobility prior to ECD fragmentation.
- A total of eleven O-glycans, including positional isomers, were identified and located from the biotherapeutic Enbrel.

REFERENCES

1. S. Ippoliti, D. Cooper-Shepherd, . Q. Yu, J. I. Langridge, Confident O-glycosylation Site Identification for ENBREL (etanercept) Using the ECD Functionality of SELECT SERIES Cyclic IMS System, Application Note, 720007458EN