LIPIDOMIC PROFILING OF BLADDER CANCER PATIENTS USING A COMPACT LC-oa-TOF

Lisa Reid¹, Emmanuelle Claude¹, Adam King¹, <u>Robert Plumb²</u>, Giorgis Isaac² and Lauren Mullin² 1:Waters Corporation, Wilmslow, UK; 2: Waters Corporation, Milford, MA, US

INTRODUCTION

- HRMS provides critical information for various **Omics studies, affording identification of** unique and reliable biomarkers of disease.
- Here, we explore the deployment of an easyto-use, smart, compact benchtop LC-oa-TOF **MS coupled with advanced statistical** processing for a typical lipidomics workflow.
 - This feasibility study was performed on plasma samples collected from bladder cancer patients, alongside healthy controls.

Linearity of MS response for lipid classes afforded by compact LC-oa-TOF MS.

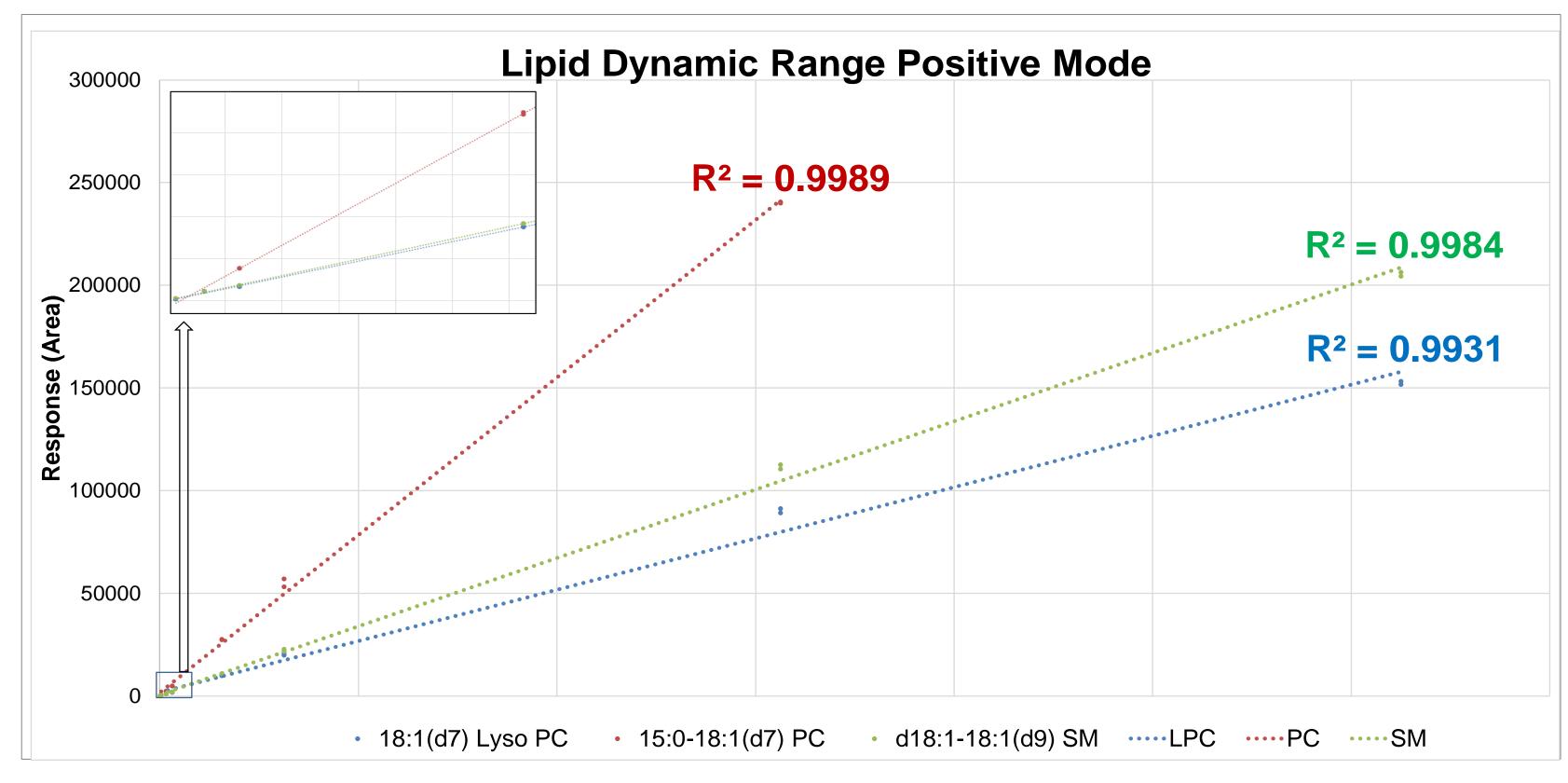


Figure 1: Using the Avanti SPLASH LipidoMIX, MS response is plotted from 40-20,000 ng/mL for 15:0-18:1(d7) PC; 4-40,000 ng/mL for d18:1-18:1(d9) SM; and 0.625-6250 ng/mL for 18:1(d7) Lyso PC. Mass errors were largely $< \pm/-5$ ppm for all injections.

©2020 Waters Corporation

Using advanced statistical processing, tentative identifications were proposed based on accurate mass as possible lipids of significance between bladder cancer and control groups.

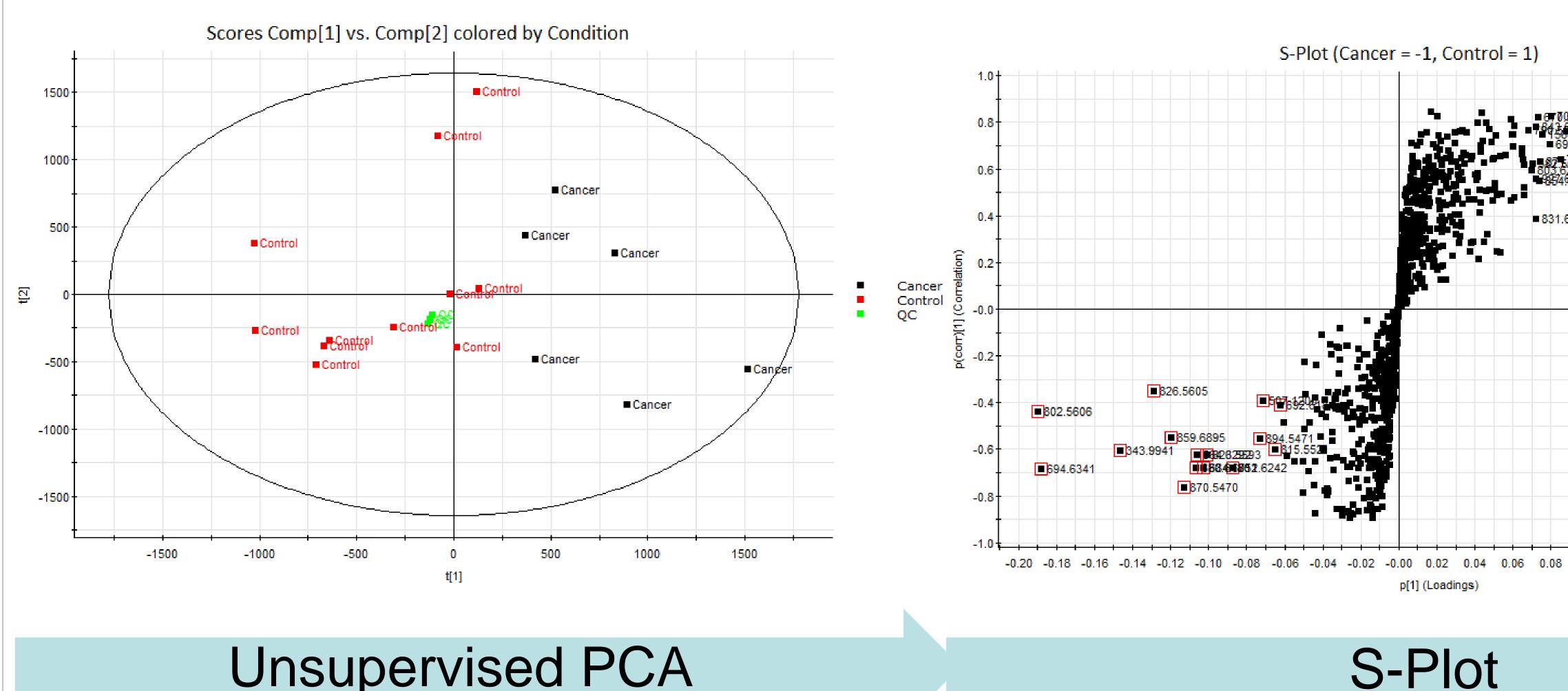


Figure 2: Principal component analysis (PCA) from control and bladder cancer patient samples, and S-plot from which markers of interest are selected and then searched against HMDB tentative identification.

	<u>Sample Preparation</u> 100µL plasma from healthy control and
	bladder cancer were protein
	precipitated with 400μ L IPA.
	<u>UPLC</u>
dyna	System: Acquity UPLC I-Class
	Column: UPLC CSH C ₁₈
	(100 x 2.1 mm, 1.7um)
	MPA: 60:40 ACN:water, 0.1% formic
- Ma	acid and 10mM ammonium formate
bla	MPB: 90:10 IPA:ACN, 0.1% formic acid
	MS
tent	MS System: RDa
	Mass Range: 50-2,000 m/z
	Ionization Polarity: +/-
	<u>Informatics</u>
•	Instrument Control: UNIFI 1.9.4
work	Processing: Progenesis QI with EZinfo
	with HMDB Searching

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

CONCLUSIONS

LC-oa-TOF MS provides suitable namic range for labelled PC, LPC and SM lipids.

arkers of significant association with ladder cancer patient samples were tatively identified as a variety of lipid classes.

This work has demonstrated a facile kflow for lipidomic profiling utilising a compact LC-oa-TOF MS.

	Upr	Upregulated in Cancer Samples				
098 66 82 682,5898055 694,6250 880.8184 90,6024,0004	ID	RT (min.)	m/z	Adduct	Mass Error (ppm)	
	₉₉ LPC(18:2)	1.03	564.3292	M+FA-H	-2.89	
.65 8324805853 ■804.5757	PC(38:6)	4.93	850.5597	M+FA-H	-0.81	
	PC(36:4)	5.13	826.5593	M+FA-H	-1.36	
	PI(38:5)	5.43	883.5396	M-H	6.08	
	PC(36:4)	5.87	826.5605	M+FA-H	0.15	
	PC(34:2)	6.13	802.5606	M+FA-H	0.38	
	PE(38:4)	7.38	748.5280	M-H2O-H	-0.93	
	SM(d18:0/ 24:1)	13.54	859.6895	M+FA-H	-1.8	
	Cer(d18:1/ 24:1)	13.59	692.6181	M+FA-H	-2.73	
3 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24	+ Cer(d18:1/ 24:0)	14.18	694.6341	M+FA-H	-2.19	

Tentative IDs